Step |
Hyp |
Ref |
Expression |
0 |
|
cmatrepV |
|- matRepV |
1 |
|
vn |
|- n |
2 |
|
cvv |
|- _V |
3 |
|
vr |
|- r |
4 |
|
vm |
|- m |
5 |
|
cbs |
|- Base |
6 |
1
|
cv |
|- n |
7 |
|
cmat |
|- Mat |
8 |
3
|
cv |
|- r |
9 |
6 8 7
|
co |
|- ( n Mat r ) |
10 |
9 5
|
cfv |
|- ( Base ` ( n Mat r ) ) |
11 |
|
vv |
|- v |
12 |
8 5
|
cfv |
|- ( Base ` r ) |
13 |
|
cmap |
|- ^m |
14 |
12 6 13
|
co |
|- ( ( Base ` r ) ^m n ) |
15 |
|
vk |
|- k |
16 |
|
vi |
|- i |
17 |
|
vj |
|- j |
18 |
17
|
cv |
|- j |
19 |
15
|
cv |
|- k |
20 |
18 19
|
wceq |
|- j = k |
21 |
11
|
cv |
|- v |
22 |
16
|
cv |
|- i |
23 |
22 21
|
cfv |
|- ( v ` i ) |
24 |
4
|
cv |
|- m |
25 |
22 18 24
|
co |
|- ( i m j ) |
26 |
20 23 25
|
cif |
|- if ( j = k , ( v ` i ) , ( i m j ) ) |
27 |
16 17 6 6 26
|
cmpo |
|- ( i e. n , j e. n |-> if ( j = k , ( v ` i ) , ( i m j ) ) ) |
28 |
15 6 27
|
cmpt |
|- ( k e. n |-> ( i e. n , j e. n |-> if ( j = k , ( v ` i ) , ( i m j ) ) ) ) |
29 |
4 11 10 14 28
|
cmpo |
|- ( m e. ( Base ` ( n Mat r ) ) , v e. ( ( Base ` r ) ^m n ) |-> ( k e. n |-> ( i e. n , j e. n |-> if ( j = k , ( v ` i ) , ( i m j ) ) ) ) ) |
30 |
1 3 2 2 29
|
cmpo |
|- ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) , v e. ( ( Base ` r ) ^m n ) |-> ( k e. n |-> ( i e. n , j e. n |-> if ( j = k , ( v ` i ) , ( i m j ) ) ) ) ) ) |
31 |
0 30
|
wceq |
|- matRepV = ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) , v e. ( ( Base ` r ) ^m n ) |-> ( k e. n |-> ( i e. n , j e. n |-> if ( j = k , ( v ` i ) , ( i m j ) ) ) ) ) ) |