Step |
Hyp |
Ref |
Expression |
0 |
|
cmat2pmat |
|- matToPolyMat |
1 |
|
vn |
|- n |
2 |
|
cfn |
|- Fin |
3 |
|
vr |
|- r |
4 |
|
cvv |
|- _V |
5 |
|
vm |
|- m |
6 |
|
cbs |
|- Base |
7 |
1
|
cv |
|- n |
8 |
|
cmat |
|- Mat |
9 |
3
|
cv |
|- r |
10 |
7 9 8
|
co |
|- ( n Mat r ) |
11 |
10 6
|
cfv |
|- ( Base ` ( n Mat r ) ) |
12 |
|
vx |
|- x |
13 |
|
vy |
|- y |
14 |
|
cascl |
|- algSc |
15 |
|
cpl1 |
|- Poly1 |
16 |
9 15
|
cfv |
|- ( Poly1 ` r ) |
17 |
16 14
|
cfv |
|- ( algSc ` ( Poly1 ` r ) ) |
18 |
12
|
cv |
|- x |
19 |
5
|
cv |
|- m |
20 |
13
|
cv |
|- y |
21 |
18 20 19
|
co |
|- ( x m y ) |
22 |
21 17
|
cfv |
|- ( ( algSc ` ( Poly1 ` r ) ) ` ( x m y ) ) |
23 |
12 13 7 7 22
|
cmpo |
|- ( x e. n , y e. n |-> ( ( algSc ` ( Poly1 ` r ) ) ` ( x m y ) ) ) |
24 |
5 11 23
|
cmpt |
|- ( m e. ( Base ` ( n Mat r ) ) |-> ( x e. n , y e. n |-> ( ( algSc ` ( Poly1 ` r ) ) ` ( x m y ) ) ) ) |
25 |
1 3 2 4 24
|
cmpo |
|- ( n e. Fin , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( x e. n , y e. n |-> ( ( algSc ` ( Poly1 ` r ) ) ` ( x m y ) ) ) ) ) |
26 |
0 25
|
wceq |
|- matToPolyMat = ( n e. Fin , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( x e. n , y e. n |-> ( ( algSc ` ( Poly1 ` r ) ) ` ( x m y ) ) ) ) ) |