Step |
Hyp |
Ref |
Expression |
0 |
|
cmbf |
|- MblFn |
1 |
|
vf |
|- f |
2 |
|
cc |
|- CC |
3 |
|
cpm |
|- ^pm |
4 |
|
cr |
|- RR |
5 |
2 4 3
|
co |
|- ( CC ^pm RR ) |
6 |
|
vx |
|- x |
7 |
|
cioo |
|- (,) |
8 |
7
|
crn |
|- ran (,) |
9 |
|
cre |
|- Re |
10 |
1
|
cv |
|- f |
11 |
9 10
|
ccom |
|- ( Re o. f ) |
12 |
11
|
ccnv |
|- `' ( Re o. f ) |
13 |
6
|
cv |
|- x |
14 |
12 13
|
cima |
|- ( `' ( Re o. f ) " x ) |
15 |
|
cvol |
|- vol |
16 |
15
|
cdm |
|- dom vol |
17 |
14 16
|
wcel |
|- ( `' ( Re o. f ) " x ) e. dom vol |
18 |
|
cim |
|- Im |
19 |
18 10
|
ccom |
|- ( Im o. f ) |
20 |
19
|
ccnv |
|- `' ( Im o. f ) |
21 |
20 13
|
cima |
|- ( `' ( Im o. f ) " x ) |
22 |
21 16
|
wcel |
|- ( `' ( Im o. f ) " x ) e. dom vol |
23 |
17 22
|
wa |
|- ( ( `' ( Re o. f ) " x ) e. dom vol /\ ( `' ( Im o. f ) " x ) e. dom vol ) |
24 |
23 6 8
|
wral |
|- A. x e. ran (,) ( ( `' ( Re o. f ) " x ) e. dom vol /\ ( `' ( Im o. f ) " x ) e. dom vol ) |
25 |
24 1 5
|
crab |
|- { f e. ( CC ^pm RR ) | A. x e. ran (,) ( ( `' ( Re o. f ) " x ) e. dom vol /\ ( `' ( Im o. f ) " x ) e. dom vol ) } |
26 |
0 25
|
wceq |
|- MblFn = { f e. ( CC ^pm RR ) | A. x e. ran (,) ( ( `' ( Re o. f ) " x ) e. dom vol /\ ( `' ( Im o. f ) " x ) e. dom vol ) } |