| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cmd | 
							 |-  MH  | 
						
						
							| 1 | 
							
								
							 | 
							vx | 
							 |-  x  | 
						
						
							| 2 | 
							
								
							 | 
							vy | 
							 |-  y  | 
						
						
							| 3 | 
							
								1
							 | 
							cv | 
							 |-  x  | 
						
						
							| 4 | 
							
								
							 | 
							cch | 
							 |-  CH  | 
						
						
							| 5 | 
							
								3 4
							 | 
							wcel | 
							 |-  x e. CH  | 
						
						
							| 6 | 
							
								2
							 | 
							cv | 
							 |-  y  | 
						
						
							| 7 | 
							
								6 4
							 | 
							wcel | 
							 |-  y e. CH  | 
						
						
							| 8 | 
							
								5 7
							 | 
							wa | 
							 |-  ( x e. CH /\ y e. CH )  | 
						
						
							| 9 | 
							
								
							 | 
							vz | 
							 |-  z  | 
						
						
							| 10 | 
							
								9
							 | 
							cv | 
							 |-  z  | 
						
						
							| 11 | 
							
								10 6
							 | 
							wss | 
							 |-  z C_ y  | 
						
						
							| 12 | 
							
								
							 | 
							chj | 
							 |-  vH  | 
						
						
							| 13 | 
							
								10 3 12
							 | 
							co | 
							 |-  ( z vH x )  | 
						
						
							| 14 | 
							
								13 6
							 | 
							cin | 
							 |-  ( ( z vH x ) i^i y )  | 
						
						
							| 15 | 
							
								3 6
							 | 
							cin | 
							 |-  ( x i^i y )  | 
						
						
							| 16 | 
							
								10 15 12
							 | 
							co | 
							 |-  ( z vH ( x i^i y ) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							wceq | 
							 |-  ( ( z vH x ) i^i y ) = ( z vH ( x i^i y ) )  | 
						
						
							| 18 | 
							
								11 17
							 | 
							wi | 
							 |-  ( z C_ y -> ( ( z vH x ) i^i y ) = ( z vH ( x i^i y ) ) )  | 
						
						
							| 19 | 
							
								18 9 4
							 | 
							wral | 
							 |-  A. z e. CH ( z C_ y -> ( ( z vH x ) i^i y ) = ( z vH ( x i^i y ) ) )  | 
						
						
							| 20 | 
							
								8 19
							 | 
							wa | 
							 |-  ( ( x e. CH /\ y e. CH ) /\ A. z e. CH ( z C_ y -> ( ( z vH x ) i^i y ) = ( z vH ( x i^i y ) ) ) )  | 
						
						
							| 21 | 
							
								20 1 2
							 | 
							copab | 
							 |-  { <. x , y >. | ( ( x e. CH /\ y e. CH ) /\ A. z e. CH ( z C_ y -> ( ( z vH x ) i^i y ) = ( z vH ( x i^i y ) ) ) ) } | 
						
						
							| 22 | 
							
								0 21
							 | 
							wceq | 
							 |-  MH = { <. x , y >. | ( ( x e. CH /\ y e. CH ) /\ A. z e. CH ( z C_ y -> ( ( z vH x ) i^i y ) = ( z vH ( x i^i y ) ) ) ) } |