| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cmdat |  |-  maDet | 
						
							| 1 |  | vn |  |-  n | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vr |  |-  r | 
						
							| 4 |  | vm |  |-  m | 
						
							| 5 |  | cbs |  |-  Base | 
						
							| 6 | 1 | cv |  |-  n | 
						
							| 7 |  | cmat |  |-  Mat | 
						
							| 8 | 3 | cv |  |-  r | 
						
							| 9 | 6 8 7 | co |  |-  ( n Mat r ) | 
						
							| 10 | 9 5 | cfv |  |-  ( Base ` ( n Mat r ) ) | 
						
							| 11 |  | cgsu |  |-  gsum | 
						
							| 12 |  | vp |  |-  p | 
						
							| 13 |  | csymg |  |-  SymGrp | 
						
							| 14 | 6 13 | cfv |  |-  ( SymGrp ` n ) | 
						
							| 15 | 14 5 | cfv |  |-  ( Base ` ( SymGrp ` n ) ) | 
						
							| 16 |  | czrh |  |-  ZRHom | 
						
							| 17 | 8 16 | cfv |  |-  ( ZRHom ` r ) | 
						
							| 18 |  | cpsgn |  |-  pmSgn | 
						
							| 19 | 6 18 | cfv |  |-  ( pmSgn ` n ) | 
						
							| 20 | 17 19 | ccom |  |-  ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) | 
						
							| 21 | 12 | cv |  |-  p | 
						
							| 22 | 21 20 | cfv |  |-  ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) | 
						
							| 23 |  | cmulr |  |-  .r | 
						
							| 24 | 8 23 | cfv |  |-  ( .r ` r ) | 
						
							| 25 |  | cmgp |  |-  mulGrp | 
						
							| 26 | 8 25 | cfv |  |-  ( mulGrp ` r ) | 
						
							| 27 |  | vx |  |-  x | 
						
							| 28 | 27 | cv |  |-  x | 
						
							| 29 | 28 21 | cfv |  |-  ( p ` x ) | 
						
							| 30 | 4 | cv |  |-  m | 
						
							| 31 | 29 28 30 | co |  |-  ( ( p ` x ) m x ) | 
						
							| 32 | 27 6 31 | cmpt |  |-  ( x e. n |-> ( ( p ` x ) m x ) ) | 
						
							| 33 | 26 32 11 | co |  |-  ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) | 
						
							| 34 | 22 33 24 | co |  |-  ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) | 
						
							| 35 | 12 15 34 | cmpt |  |-  ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) | 
						
							| 36 | 8 35 11 | co |  |-  ( r gsum ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) ) | 
						
							| 37 | 4 10 36 | cmpt |  |-  ( m e. ( Base ` ( n Mat r ) ) |-> ( r gsum ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) ) ) | 
						
							| 38 | 1 3 2 2 37 | cmpo |  |-  ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( r gsum ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) | 
						
							| 39 | 0 38 | wceq |  |-  maDet = ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( r gsum ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |