Metamath Proof Explorer


Definition df-meet

Description: Define poset meet. (Contributed by NM, 12-Sep-2011) (Revised by NM, 8-Sep-2018)

Ref Expression
Assertion df-meet
|- meet = ( p e. _V |-> { <. <. x , y >. , z >. | { x , y } ( glb ` p ) z } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmee
 |-  meet
1 vp
 |-  p
2 cvv
 |-  _V
3 vx
 |-  x
4 vy
 |-  y
5 vz
 |-  z
6 3 cv
 |-  x
7 4 cv
 |-  y
8 6 7 cpr
 |-  { x , y }
9 cglb
 |-  glb
10 1 cv
 |-  p
11 10 9 cfv
 |-  ( glb ` p )
12 5 cv
 |-  z
13 8 12 11 wbr
 |-  { x , y } ( glb ` p ) z
14 13 3 4 5 coprab
 |-  { <. <. x , y >. , z >. | { x , y } ( glb ` p ) z }
15 1 2 14 cmpt
 |-  ( p e. _V |-> { <. <. x , y >. , z >. | { x , y } ( glb ` p ) z } )
16 0 15 wceq
 |-  meet = ( p e. _V |-> { <. <. x , y >. , z >. | { x , y } ( glb ` p ) z } )