Step |
Hyp |
Ref |
Expression |
0 |
|
cmetu |
|- metUnif |
1 |
|
vd |
|- d |
2 |
|
cpsmet |
|- PsMet |
3 |
2
|
crn |
|- ran PsMet |
4 |
3
|
cuni |
|- U. ran PsMet |
5 |
1
|
cv |
|- d |
6 |
5
|
cdm |
|- dom d |
7 |
6
|
cdm |
|- dom dom d |
8 |
7 7
|
cxp |
|- ( dom dom d X. dom dom d ) |
9 |
|
cfg |
|- filGen |
10 |
|
va |
|- a |
11 |
|
crp |
|- RR+ |
12 |
5
|
ccnv |
|- `' d |
13 |
|
cc0 |
|- 0 |
14 |
|
cico |
|- [,) |
15 |
10
|
cv |
|- a |
16 |
13 15 14
|
co |
|- ( 0 [,) a ) |
17 |
12 16
|
cima |
|- ( `' d " ( 0 [,) a ) ) |
18 |
10 11 17
|
cmpt |
|- ( a e. RR+ |-> ( `' d " ( 0 [,) a ) ) ) |
19 |
18
|
crn |
|- ran ( a e. RR+ |-> ( `' d " ( 0 [,) a ) ) ) |
20 |
8 19 9
|
co |
|- ( ( dom dom d X. dom dom d ) filGen ran ( a e. RR+ |-> ( `' d " ( 0 [,) a ) ) ) ) |
21 |
1 4 20
|
cmpt |
|- ( d e. U. ran PsMet |-> ( ( dom dom d X. dom dom d ) filGen ran ( a e. RR+ |-> ( `' d " ( 0 [,) a ) ) ) ) ) |
22 |
0 21
|
wceq |
|- metUnif = ( d e. U. ran PsMet |-> ( ( dom dom d X. dom dom d ) filGen ran ( a e. RR+ |-> ( `' d " ( 0 [,) a ) ) ) ) ) |