Metamath Proof Explorer


Definition df-mgm

Description: Amagma is a set equipped with an everywhere defined internal operation. Definition 1 in BourbakiAlg1 p. 1, or definition of a groupoid in section I.1 of Bruck p. 1. Note: The term "groupoid" is now widely used to refer to other objects: (small) categories all of whose morphisms are invertible, or groups with a partial function replacing the binary operation. Therefore, we will only use the term "magma" for the present notion in set.mm. (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020)

Ref Expression
Assertion df-mgm
|- Mgm = { g | [. ( Base ` g ) / b ]. [. ( +g ` g ) / o ]. A. x e. b A. y e. b ( x o y ) e. b }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmgm
 |-  Mgm
1 vg
 |-  g
2 cbs
 |-  Base
3 1 cv
 |-  g
4 3 2 cfv
 |-  ( Base ` g )
5 vb
 |-  b
6 cplusg
 |-  +g
7 3 6 cfv
 |-  ( +g ` g )
8 vo
 |-  o
9 vx
 |-  x
10 5 cv
 |-  b
11 vy
 |-  y
12 9 cv
 |-  x
13 8 cv
 |-  o
14 11 cv
 |-  y
15 12 14 13 co
 |-  ( x o y )
16 15 10 wcel
 |-  ( x o y ) e. b
17 16 11 10 wral
 |-  A. y e. b ( x o y ) e. b
18 17 9 10 wral
 |-  A. x e. b A. y e. b ( x o y ) e. b
19 18 8 7 wsbc
 |-  [. ( +g ` g ) / o ]. A. x e. b A. y e. b ( x o y ) e. b
20 19 5 4 wsbc
 |-  [. ( Base ` g ) / b ]. [. ( +g ` g ) / o ]. A. x e. b A. y e. b ( x o y ) e. b
21 20 1 cab
 |-  { g | [. ( Base ` g ) / b ]. [. ( +g ` g ) / o ]. A. x e. b A. y e. b ( x o y ) e. b }
22 0 21 wceq
 |-  Mgm = { g | [. ( Base ` g ) / b ]. [. ( +g ` g ) / o ]. A. x e. b A. y e. b ( x o y ) e. b }