| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cmgmhm |  |-  MgmHom | 
						
							| 1 |  | vs |  |-  s | 
						
							| 2 |  | cmgm |  |-  Mgm | 
						
							| 3 |  | vt |  |-  t | 
						
							| 4 |  | vf |  |-  f | 
						
							| 5 |  | cbs |  |-  Base | 
						
							| 6 | 3 | cv |  |-  t | 
						
							| 7 | 6 5 | cfv |  |-  ( Base ` t ) | 
						
							| 8 |  | cmap |  |-  ^m | 
						
							| 9 | 1 | cv |  |-  s | 
						
							| 10 | 9 5 | cfv |  |-  ( Base ` s ) | 
						
							| 11 | 7 10 8 | co |  |-  ( ( Base ` t ) ^m ( Base ` s ) ) | 
						
							| 12 |  | vx |  |-  x | 
						
							| 13 |  | vy |  |-  y | 
						
							| 14 | 4 | cv |  |-  f | 
						
							| 15 | 12 | cv |  |-  x | 
						
							| 16 |  | cplusg |  |-  +g | 
						
							| 17 | 9 16 | cfv |  |-  ( +g ` s ) | 
						
							| 18 | 13 | cv |  |-  y | 
						
							| 19 | 15 18 17 | co |  |-  ( x ( +g ` s ) y ) | 
						
							| 20 | 19 14 | cfv |  |-  ( f ` ( x ( +g ` s ) y ) ) | 
						
							| 21 | 15 14 | cfv |  |-  ( f ` x ) | 
						
							| 22 | 6 16 | cfv |  |-  ( +g ` t ) | 
						
							| 23 | 18 14 | cfv |  |-  ( f ` y ) | 
						
							| 24 | 21 23 22 | co |  |-  ( ( f ` x ) ( +g ` t ) ( f ` y ) ) | 
						
							| 25 | 20 24 | wceq |  |-  ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) | 
						
							| 26 | 25 13 10 | wral |  |-  A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) | 
						
							| 27 | 26 12 10 | wral |  |-  A. x e. ( Base ` s ) A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) | 
						
							| 28 | 27 4 11 | crab |  |-  { f e. ( ( Base ` t ) ^m ( Base ` s ) ) | A. x e. ( Base ` s ) A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) } | 
						
							| 29 | 1 3 2 2 28 | cmpo |  |-  ( s e. Mgm , t e. Mgm |-> { f e. ( ( Base ` t ) ^m ( Base ` s ) ) | A. x e. ( Base ` s ) A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) } ) | 
						
							| 30 | 0 29 | wceq |  |-  MgmHom = ( s e. Mgm , t e. Mgm |-> { f e. ( ( Base ` t ) ^m ( Base ` s ) ) | A. x e. ( Base ` s ) A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) } ) |