Step |
Hyp |
Ref |
Expression |
0 |
|
cmhm |
|- MndHom |
1 |
|
vs |
|- s |
2 |
|
cmnd |
|- Mnd |
3 |
|
vt |
|- t |
4 |
|
vf |
|- f |
5 |
|
cbs |
|- Base |
6 |
3
|
cv |
|- t |
7 |
6 5
|
cfv |
|- ( Base ` t ) |
8 |
|
cmap |
|- ^m |
9 |
1
|
cv |
|- s |
10 |
9 5
|
cfv |
|- ( Base ` s ) |
11 |
7 10 8
|
co |
|- ( ( Base ` t ) ^m ( Base ` s ) ) |
12 |
|
vx |
|- x |
13 |
|
vy |
|- y |
14 |
4
|
cv |
|- f |
15 |
12
|
cv |
|- x |
16 |
|
cplusg |
|- +g |
17 |
9 16
|
cfv |
|- ( +g ` s ) |
18 |
13
|
cv |
|- y |
19 |
15 18 17
|
co |
|- ( x ( +g ` s ) y ) |
20 |
19 14
|
cfv |
|- ( f ` ( x ( +g ` s ) y ) ) |
21 |
15 14
|
cfv |
|- ( f ` x ) |
22 |
6 16
|
cfv |
|- ( +g ` t ) |
23 |
18 14
|
cfv |
|- ( f ` y ) |
24 |
21 23 22
|
co |
|- ( ( f ` x ) ( +g ` t ) ( f ` y ) ) |
25 |
20 24
|
wceq |
|- ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) |
26 |
25 13 10
|
wral |
|- A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) |
27 |
26 12 10
|
wral |
|- A. x e. ( Base ` s ) A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) |
28 |
|
c0g |
|- 0g |
29 |
9 28
|
cfv |
|- ( 0g ` s ) |
30 |
29 14
|
cfv |
|- ( f ` ( 0g ` s ) ) |
31 |
6 28
|
cfv |
|- ( 0g ` t ) |
32 |
30 31
|
wceq |
|- ( f ` ( 0g ` s ) ) = ( 0g ` t ) |
33 |
27 32
|
wa |
|- ( A. x e. ( Base ` s ) A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) /\ ( f ` ( 0g ` s ) ) = ( 0g ` t ) ) |
34 |
33 4 11
|
crab |
|- { f e. ( ( Base ` t ) ^m ( Base ` s ) ) | ( A. x e. ( Base ` s ) A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) /\ ( f ` ( 0g ` s ) ) = ( 0g ` t ) ) } |
35 |
1 3 2 2 34
|
cmpo |
|- ( s e. Mnd , t e. Mnd |-> { f e. ( ( Base ` t ) ^m ( Base ` s ) ) | ( A. x e. ( Base ` s ) A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) /\ ( f ` ( 0g ` s ) ) = ( 0g ` t ) ) } ) |
36 |
0 35
|
wceq |
|- MndHom = ( s e. Mnd , t e. Mnd |-> { f e. ( ( Base ` t ) ^m ( Base ` s ) ) | ( A. x e. ( Base ` s ) A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) /\ ( f ` ( 0g ` s ) ) = ( 0g ` t ) ) } ) |