Step |
Hyp |
Ref |
Expression |
0 |
|
cminusg |
|- invg |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
vx |
|- x |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- g |
6 |
5 4
|
cfv |
|- ( Base ` g ) |
7 |
|
vw |
|- w |
8 |
7
|
cv |
|- w |
9 |
|
cplusg |
|- +g |
10 |
5 9
|
cfv |
|- ( +g ` g ) |
11 |
3
|
cv |
|- x |
12 |
8 11 10
|
co |
|- ( w ( +g ` g ) x ) |
13 |
|
c0g |
|- 0g |
14 |
5 13
|
cfv |
|- ( 0g ` g ) |
15 |
12 14
|
wceq |
|- ( w ( +g ` g ) x ) = ( 0g ` g ) |
16 |
15 7 6
|
crio |
|- ( iota_ w e. ( Base ` g ) ( w ( +g ` g ) x ) = ( 0g ` g ) ) |
17 |
3 6 16
|
cmpt |
|- ( x e. ( Base ` g ) |-> ( iota_ w e. ( Base ` g ) ( w ( +g ` g ) x ) = ( 0g ` g ) ) ) |
18 |
1 2 17
|
cmpt |
|- ( g e. _V |-> ( x e. ( Base ` g ) |-> ( iota_ w e. ( Base ` g ) ( w ( +g ` g ) x ) = ( 0g ` g ) ) ) ) |
19 |
0 18
|
wceq |
|- invg = ( g e. _V |-> ( x e. ( Base ` g ) |-> ( iota_ w e. ( Base ` g ) ( w ( +g ` g ) x ) = ( 0g ` g ) ) ) ) |