Step |
Hyp |
Ref |
Expression |
0 |
|
cmir |
|- pInvG |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
vm |
|- m |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- g |
6 |
5 4
|
cfv |
|- ( Base ` g ) |
7 |
|
va |
|- a |
8 |
|
vb |
|- b |
9 |
3
|
cv |
|- m |
10 |
|
cds |
|- dist |
11 |
5 10
|
cfv |
|- ( dist ` g ) |
12 |
8
|
cv |
|- b |
13 |
9 12 11
|
co |
|- ( m ( dist ` g ) b ) |
14 |
7
|
cv |
|- a |
15 |
9 14 11
|
co |
|- ( m ( dist ` g ) a ) |
16 |
13 15
|
wceq |
|- ( m ( dist ` g ) b ) = ( m ( dist ` g ) a ) |
17 |
|
citv |
|- Itv |
18 |
5 17
|
cfv |
|- ( Itv ` g ) |
19 |
12 14 18
|
co |
|- ( b ( Itv ` g ) a ) |
20 |
9 19
|
wcel |
|- m e. ( b ( Itv ` g ) a ) |
21 |
16 20
|
wa |
|- ( ( m ( dist ` g ) b ) = ( m ( dist ` g ) a ) /\ m e. ( b ( Itv ` g ) a ) ) |
22 |
21 8 6
|
crio |
|- ( iota_ b e. ( Base ` g ) ( ( m ( dist ` g ) b ) = ( m ( dist ` g ) a ) /\ m e. ( b ( Itv ` g ) a ) ) ) |
23 |
7 6 22
|
cmpt |
|- ( a e. ( Base ` g ) |-> ( iota_ b e. ( Base ` g ) ( ( m ( dist ` g ) b ) = ( m ( dist ` g ) a ) /\ m e. ( b ( Itv ` g ) a ) ) ) ) |
24 |
3 6 23
|
cmpt |
|- ( m e. ( Base ` g ) |-> ( a e. ( Base ` g ) |-> ( iota_ b e. ( Base ` g ) ( ( m ( dist ` g ) b ) = ( m ( dist ` g ) a ) /\ m e. ( b ( Itv ` g ) a ) ) ) ) ) |
25 |
1 2 24
|
cmpt |
|- ( g e. _V |-> ( m e. ( Base ` g ) |-> ( a e. ( Base ` g ) |-> ( iota_ b e. ( Base ` g ) ( ( m ( dist ` g ) b ) = ( m ( dist ` g ) a ) /\ m e. ( b ( Itv ` g ) a ) ) ) ) ) ) |
26 |
0 25
|
wceq |
|- pInvG = ( g e. _V |-> ( m e. ( Base ` g ) |-> ( a e. ( Base ` g ) |-> ( iota_ b e. ( Base ` g ) ( ( m ( dist ` g ) b ) = ( m ( dist ` g ) a ) /\ m e. ( b ( Itv ` g ) a ) ) ) ) ) ) |