Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Definition and basic properties of monoids
df-mnd
Metamath Proof Explorer
Description: Amonoid is a semigroup, which has a two-sided neutral element.
Definition 2 in BourbakiAlg1 p. 12. In other words (according to the
definition in Lang p. 3), a monoid is a set equipped with an
everywhere defined internal operation (see mndcl ), whose operation is
associative (see mndass ) and has a two-sided neutral element (see
mndid ), see also ismnd . (Contributed by Mario Carneiro , 6-Jan-2015) (Revised by AV , 1-Feb-2020)
Ref
Expression
Assertion
df-mnd
|- Mnd = { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) }
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cmnd
|- Mnd
1
vg
|- g
2
csgrp
|- Smgrp
3
cbs
|- Base
4
1
cv
|- g
5
4 3
cfv
|- ( Base ` g )
6
vb
|- b
7
cplusg
|- +g
8
4 7
cfv
|- ( +g ` g )
9
vp
|- p
10
ve
|- e
11
6
cv
|- b
12
vx
|- x
13
10
cv
|- e
14
9
cv
|- p
15
12
cv
|- x
16
13 15 14
co
|- ( e p x )
17
16 15
wceq
|- ( e p x ) = x
18
15 13 14
co
|- ( x p e )
19
18 15
wceq
|- ( x p e ) = x
20
17 19
wa
|- ( ( e p x ) = x /\ ( x p e ) = x )
21
20 12 11
wral
|- A. x e. b ( ( e p x ) = x /\ ( x p e ) = x )
22
21 10 11
wrex
|- E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x )
23
22 9 8
wsbc
|- [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x )
24
23 6 5
wsbc
|- [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x )
25
24 1 2
crab
|- { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) }
26
0 25
wceq
|- Mnd = { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) }