Metamath Proof Explorer


Definition df-mnd

Description: Amonoid is a semigroup, which has a two-sided neutral element. Definition 2 in BourbakiAlg1 p. 12. In other words (according to the definition in Lang p. 3), a monoid is a set equipped with an everywhere defined internal operation (see mndcl ), whose operation is associative (see mndass ) and has a two-sided neutral element (see mndid ), see also ismnd . (Contributed by Mario Carneiro, 6-Jan-2015) (Revised by AV, 1-Feb-2020)

Ref Expression
Assertion df-mnd
|- Mnd = { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmnd
 |-  Mnd
1 vg
 |-  g
2 csgrp
 |-  Smgrp
3 cbs
 |-  Base
4 1 cv
 |-  g
5 4 3 cfv
 |-  ( Base ` g )
6 vb
 |-  b
7 cplusg
 |-  +g
8 4 7 cfv
 |-  ( +g ` g )
9 vp
 |-  p
10 ve
 |-  e
11 6 cv
 |-  b
12 vx
 |-  x
13 10 cv
 |-  e
14 9 cv
 |-  p
15 12 cv
 |-  x
16 13 15 14 co
 |-  ( e p x )
17 16 15 wceq
 |-  ( e p x ) = x
18 15 13 14 co
 |-  ( x p e )
19 18 15 wceq
 |-  ( x p e ) = x
20 17 19 wa
 |-  ( ( e p x ) = x /\ ( x p e ) = x )
21 20 12 11 wral
 |-  A. x e. b ( ( e p x ) = x /\ ( x p e ) = x )
22 21 10 11 wrex
 |-  E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x )
23 22 9 8 wsbc
 |-  [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x )
24 23 6 5 wsbc
 |-  [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x )
25 24 1 2 crab
 |-  { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) }
26 0 25 wceq
 |-  Mnd = { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) }