Metamath Proof Explorer


Definition df-mopn

Description: Define a function whose value is the family of open sets of a metric space. See elmopn for its main property. (Contributed by NM, 1-Sep-2006)

Ref Expression
Assertion df-mopn
|- MetOpen = ( d e. U. ran *Met |-> ( topGen ` ran ( ball ` d ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmopn
 |-  MetOpen
1 vd
 |-  d
2 cxmet
 |-  *Met
3 2 crn
 |-  ran *Met
4 3 cuni
 |-  U. ran *Met
5 ctg
 |-  topGen
6 cbl
 |-  ball
7 1 cv
 |-  d
8 7 6 cfv
 |-  ( ball ` d )
9 8 crn
 |-  ran ( ball ` d )
10 9 5 cfv
 |-  ( topGen ` ran ( ball ` d ) )
11 1 4 10 cmpt
 |-  ( d e. U. ran *Met |-> ( topGen ` ran ( ball ` d ) ) )
12 0 11 wceq
 |-  MetOpen = ( d e. U. ran *Met |-> ( topGen ` ran ( ball ` d ) ) )