Step |
Hyp |
Ref |
Expression |
0 |
|
cmpq |
|- .pQ |
1 |
|
vx |
|- x |
2 |
|
cnpi |
|- N. |
3 |
2 2
|
cxp |
|- ( N. X. N. ) |
4 |
|
vy |
|- y |
5 |
|
c1st |
|- 1st |
6 |
1
|
cv |
|- x |
7 |
6 5
|
cfv |
|- ( 1st ` x ) |
8 |
|
cmi |
|- .N |
9 |
4
|
cv |
|- y |
10 |
9 5
|
cfv |
|- ( 1st ` y ) |
11 |
7 10 8
|
co |
|- ( ( 1st ` x ) .N ( 1st ` y ) ) |
12 |
|
c2nd |
|- 2nd |
13 |
6 12
|
cfv |
|- ( 2nd ` x ) |
14 |
9 12
|
cfv |
|- ( 2nd ` y ) |
15 |
13 14 8
|
co |
|- ( ( 2nd ` x ) .N ( 2nd ` y ) ) |
16 |
11 15
|
cop |
|- <. ( ( 1st ` x ) .N ( 1st ` y ) ) , ( ( 2nd ` x ) .N ( 2nd ` y ) ) >. |
17 |
1 4 3 3 16
|
cmpo |
|- ( x e. ( N. X. N. ) , y e. ( N. X. N. ) |-> <. ( ( 1st ` x ) .N ( 1st ` y ) ) , ( ( 2nd ` x ) .N ( 2nd ` y ) ) >. ) |
18 |
0 17
|
wceq |
|- .pQ = ( x e. ( N. X. N. ) , y e. ( N. X. N. ) |-> <. ( ( 1st ` x ) .N ( 1st ` y ) ) , ( ( 2nd ` x ) .N ( 2nd ` y ) ) >. ) |