Description: Define maps-to notation for defining a function via a rule. Read as "the function which maps x (in A ) to B ( x ) ". The class expression B is the value of the function at x and normally contains the variable x . An example is the square function for complex numbers, ( x e. CC |-> ( x ^ 2 ) ) . Similar to the definition of mapping in ChoquetDD p. 2. (Contributed by NM, 17-Feb-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | df-mpt | |- ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | vx | |- x |
|
1 | cA | |- A |
|
2 | cB | |- B |
|
3 | 0 1 2 | cmpt | |- ( x e. A |-> B ) |
4 | vy | |- y |
|
5 | 0 | cv | |- x |
6 | 5 1 | wcel | |- x e. A |
7 | 4 | cv | |- y |
8 | 7 2 | wceq | |- y = B |
9 | 6 8 | wa | |- ( x e. A /\ y = B ) |
10 | 9 0 4 | copab | |- { <. x , y >. | ( x e. A /\ y = B ) } |
11 | 3 10 | wceq | |- ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) } |