Metamath Proof Explorer


Definition df-mpt

Description: Define maps-to notation for defining a function via a rule. Read as "the function which maps x (in A ) to B ( x ) ". The class expression B is the value of the function at x and normally contains the variable x . An example is the square function for complex numbers, ( x e. CC |-> ( x ^ 2 ) ) . Similar to the definition of mapping in ChoquetDD p. 2. (Contributed by NM, 17-Feb-2008)

Ref Expression
Assertion df-mpt
|- ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 cA
 |-  A
2 cB
 |-  B
3 0 1 2 cmpt
 |-  ( x e. A |-> B )
4 vy
 |-  y
5 0 cv
 |-  x
6 5 1 wcel
 |-  x e. A
7 4 cv
 |-  y
8 7 2 wceq
 |-  y = B
9 6 8 wa
 |-  ( x e. A /\ y = B )
10 9 0 4 copab
 |-  { <. x , y >. | ( x e. A /\ y = B ) }
11 3 10 wceq
 |-  ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) }