| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cmr |  |-  .R | 
						
							| 1 |  | vx |  |-  x | 
						
							| 2 |  | vy |  |-  y | 
						
							| 3 |  | vz |  |-  z | 
						
							| 4 | 1 | cv |  |-  x | 
						
							| 5 |  | cnr |  |-  R. | 
						
							| 6 | 4 5 | wcel |  |-  x e. R. | 
						
							| 7 | 2 | cv |  |-  y | 
						
							| 8 | 7 5 | wcel |  |-  y e. R. | 
						
							| 9 | 6 8 | wa |  |-  ( x e. R. /\ y e. R. ) | 
						
							| 10 |  | vw |  |-  w | 
						
							| 11 |  | vv |  |-  v | 
						
							| 12 |  | vu |  |-  u | 
						
							| 13 |  | vf |  |-  f | 
						
							| 14 | 10 | cv |  |-  w | 
						
							| 15 | 11 | cv |  |-  v | 
						
							| 16 | 14 15 | cop |  |-  <. w , v >. | 
						
							| 17 |  | cer |  |-  ~R | 
						
							| 18 | 16 17 | cec |  |-  [ <. w , v >. ] ~R | 
						
							| 19 | 4 18 | wceq |  |-  x = [ <. w , v >. ] ~R | 
						
							| 20 | 12 | cv |  |-  u | 
						
							| 21 | 13 | cv |  |-  f | 
						
							| 22 | 20 21 | cop |  |-  <. u , f >. | 
						
							| 23 | 22 17 | cec |  |-  [ <. u , f >. ] ~R | 
						
							| 24 | 7 23 | wceq |  |-  y = [ <. u , f >. ] ~R | 
						
							| 25 | 19 24 | wa |  |-  ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) | 
						
							| 26 | 3 | cv |  |-  z | 
						
							| 27 |  | cmp |  |-  .P. | 
						
							| 28 | 14 20 27 | co |  |-  ( w .P. u ) | 
						
							| 29 |  | cpp |  |-  +P. | 
						
							| 30 | 15 21 27 | co |  |-  ( v .P. f ) | 
						
							| 31 | 28 30 29 | co |  |-  ( ( w .P. u ) +P. ( v .P. f ) ) | 
						
							| 32 | 14 21 27 | co |  |-  ( w .P. f ) | 
						
							| 33 | 15 20 27 | co |  |-  ( v .P. u ) | 
						
							| 34 | 32 33 29 | co |  |-  ( ( w .P. f ) +P. ( v .P. u ) ) | 
						
							| 35 | 31 34 | cop |  |-  <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. | 
						
							| 36 | 35 17 | cec |  |-  [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R | 
						
							| 37 | 26 36 | wceq |  |-  z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R | 
						
							| 38 | 25 37 | wa |  |-  ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R ) | 
						
							| 39 | 38 13 | wex |  |-  E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R ) | 
						
							| 40 | 39 12 | wex |  |-  E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R ) | 
						
							| 41 | 40 11 | wex |  |-  E. v E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R ) | 
						
							| 42 | 41 10 | wex |  |-  E. w E. v E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R ) | 
						
							| 43 | 9 42 | wa |  |-  ( ( x e. R. /\ y e. R. ) /\ E. w E. v E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R ) ) | 
						
							| 44 | 43 1 2 3 | coprab |  |-  { <. <. x , y >. , z >. | ( ( x e. R. /\ y e. R. ) /\ E. w E. v E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R ) ) } | 
						
							| 45 | 0 44 | wceq |  |-  .R = { <. <. x , y >. , z >. | ( ( x e. R. /\ y e. R. ) /\ E. w E. v E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R ) ) } |