Step |
Hyp |
Ref |
Expression |
0 |
|
cmr |
|- .R |
1 |
|
vx |
|- x |
2 |
|
vy |
|- y |
3 |
|
vz |
|- z |
4 |
1
|
cv |
|- x |
5 |
|
cnr |
|- R. |
6 |
4 5
|
wcel |
|- x e. R. |
7 |
2
|
cv |
|- y |
8 |
7 5
|
wcel |
|- y e. R. |
9 |
6 8
|
wa |
|- ( x e. R. /\ y e. R. ) |
10 |
|
vw |
|- w |
11 |
|
vv |
|- v |
12 |
|
vu |
|- u |
13 |
|
vf |
|- f |
14 |
10
|
cv |
|- w |
15 |
11
|
cv |
|- v |
16 |
14 15
|
cop |
|- <. w , v >. |
17 |
|
cer |
|- ~R |
18 |
16 17
|
cec |
|- [ <. w , v >. ] ~R |
19 |
4 18
|
wceq |
|- x = [ <. w , v >. ] ~R |
20 |
12
|
cv |
|- u |
21 |
13
|
cv |
|- f |
22 |
20 21
|
cop |
|- <. u , f >. |
23 |
22 17
|
cec |
|- [ <. u , f >. ] ~R |
24 |
7 23
|
wceq |
|- y = [ <. u , f >. ] ~R |
25 |
19 24
|
wa |
|- ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) |
26 |
3
|
cv |
|- z |
27 |
|
cmp |
|- .P. |
28 |
14 20 27
|
co |
|- ( w .P. u ) |
29 |
|
cpp |
|- +P. |
30 |
15 21 27
|
co |
|- ( v .P. f ) |
31 |
28 30 29
|
co |
|- ( ( w .P. u ) +P. ( v .P. f ) ) |
32 |
14 21 27
|
co |
|- ( w .P. f ) |
33 |
15 20 27
|
co |
|- ( v .P. u ) |
34 |
32 33 29
|
co |
|- ( ( w .P. f ) +P. ( v .P. u ) ) |
35 |
31 34
|
cop |
|- <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. |
36 |
35 17
|
cec |
|- [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R |
37 |
26 36
|
wceq |
|- z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R |
38 |
25 37
|
wa |
|- ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R ) |
39 |
38 13
|
wex |
|- E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R ) |
40 |
39 12
|
wex |
|- E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R ) |
41 |
40 11
|
wex |
|- E. v E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R ) |
42 |
41 10
|
wex |
|- E. w E. v E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R ) |
43 |
9 42
|
wa |
|- ( ( x e. R. /\ y e. R. ) /\ E. w E. v E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R ) ) |
44 |
43 1 2 3
|
coprab |
|- { <. <. x , y >. , z >. | ( ( x e. R. /\ y e. R. ) /\ E. w E. v E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R ) ) } |
45 |
0 44
|
wceq |
|- .R = { <. <. x , y >. , z >. | ( ( x e. R. /\ y e. R. ) /\ E. w E. v E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R ) ) } |