Step |
Hyp |
Ref |
Expression |
0 |
|
cms |
|- MetSp |
1 |
|
vf |
|- f |
2 |
|
cxms |
|- *MetSp |
3 |
|
cds |
|- dist |
4 |
1
|
cv |
|- f |
5 |
4 3
|
cfv |
|- ( dist ` f ) |
6 |
|
cbs |
|- Base |
7 |
4 6
|
cfv |
|- ( Base ` f ) |
8 |
7 7
|
cxp |
|- ( ( Base ` f ) X. ( Base ` f ) ) |
9 |
5 8
|
cres |
|- ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) |
10 |
|
cmet |
|- Met |
11 |
7 10
|
cfv |
|- ( Met ` ( Base ` f ) ) |
12 |
9 11
|
wcel |
|- ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) e. ( Met ` ( Base ` f ) ) |
13 |
12 1 2
|
crab |
|- { f e. *MetSp | ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) e. ( Met ` ( Base ` f ) ) } |
14 |
0 13
|
wceq |
|- MetSp = { f e. *MetSp | ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) e. ( Met ` ( Base ` f ) ) } |