Step |
Hyp |
Ref |
Expression |
0 |
|
cmu |
|- mmu |
1 |
|
vx |
|- x |
2 |
|
cn |
|- NN |
3 |
|
vp |
|- p |
4 |
|
cprime |
|- Prime |
5 |
3
|
cv |
|- p |
6 |
|
cexp |
|- ^ |
7 |
|
c2 |
|- 2 |
8 |
5 7 6
|
co |
|- ( p ^ 2 ) |
9 |
|
cdvds |
|- || |
10 |
1
|
cv |
|- x |
11 |
8 10 9
|
wbr |
|- ( p ^ 2 ) || x |
12 |
11 3 4
|
wrex |
|- E. p e. Prime ( p ^ 2 ) || x |
13 |
|
cc0 |
|- 0 |
14 |
|
c1 |
|- 1 |
15 |
14
|
cneg |
|- -u 1 |
16 |
|
chash |
|- # |
17 |
5 10 9
|
wbr |
|- p || x |
18 |
17 3 4
|
crab |
|- { p e. Prime | p || x } |
19 |
18 16
|
cfv |
|- ( # ` { p e. Prime | p || x } ) |
20 |
15 19 6
|
co |
|- ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) |
21 |
12 13 20
|
cif |
|- if ( E. p e. Prime ( p ^ 2 ) || x , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) ) |
22 |
1 2 21
|
cmpt |
|- ( x e. NN |-> if ( E. p e. Prime ( p ^ 2 ) || x , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) ) ) |
23 |
0 22
|
wceq |
|- mmu = ( x e. NN |-> if ( E. p e. Prime ( p ^ 2 ) || x , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) ) ) |