Step |
Hyp |
Ref |
Expression |
0 |
|
cmg |
|- .g |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
vn |
|- n |
4 |
|
cz |
|- ZZ |
5 |
|
vx |
|- x |
6 |
|
cbs |
|- Base |
7 |
1
|
cv |
|- g |
8 |
7 6
|
cfv |
|- ( Base ` g ) |
9 |
3
|
cv |
|- n |
10 |
|
cc0 |
|- 0 |
11 |
9 10
|
wceq |
|- n = 0 |
12 |
|
c0g |
|- 0g |
13 |
7 12
|
cfv |
|- ( 0g ` g ) |
14 |
|
c1 |
|- 1 |
15 |
|
cplusg |
|- +g |
16 |
7 15
|
cfv |
|- ( +g ` g ) |
17 |
|
cn |
|- NN |
18 |
5
|
cv |
|- x |
19 |
18
|
csn |
|- { x } |
20 |
17 19
|
cxp |
|- ( NN X. { x } ) |
21 |
16 20 14
|
cseq |
|- seq 1 ( ( +g ` g ) , ( NN X. { x } ) ) |
22 |
|
vs |
|- s |
23 |
|
clt |
|- < |
24 |
10 9 23
|
wbr |
|- 0 < n |
25 |
22
|
cv |
|- s |
26 |
9 25
|
cfv |
|- ( s ` n ) |
27 |
|
cminusg |
|- invg |
28 |
7 27
|
cfv |
|- ( invg ` g ) |
29 |
9
|
cneg |
|- -u n |
30 |
29 25
|
cfv |
|- ( s ` -u n ) |
31 |
30 28
|
cfv |
|- ( ( invg ` g ) ` ( s ` -u n ) ) |
32 |
24 26 31
|
cif |
|- if ( 0 < n , ( s ` n ) , ( ( invg ` g ) ` ( s ` -u n ) ) ) |
33 |
22 21 32
|
csb |
|- [_ seq 1 ( ( +g ` g ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` g ) ` ( s ` -u n ) ) ) |
34 |
11 13 33
|
cif |
|- if ( n = 0 , ( 0g ` g ) , [_ seq 1 ( ( +g ` g ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` g ) ` ( s ` -u n ) ) ) ) |
35 |
3 5 4 8 34
|
cmpo |
|- ( n e. ZZ , x e. ( Base ` g ) |-> if ( n = 0 , ( 0g ` g ) , [_ seq 1 ( ( +g ` g ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` g ) ` ( s ` -u n ) ) ) ) ) |
36 |
1 2 35
|
cmpt |
|- ( g e. _V |-> ( n e. ZZ , x e. ( Base ` g ) |-> if ( n = 0 , ( 0g ` g ) , [_ seq 1 ( ( +g ` g ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` g ) ` ( s ` -u n ) ) ) ) ) ) |
37 |
0 36
|
wceq |
|- .g = ( g e. _V |-> ( n e. ZZ , x e. ( Base ` g ) |-> if ( n = 0 , ( 0g ` g ) , [_ seq 1 ( ( +g ` g ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` g ) ` ( s ` -u n ) ) ) ) ) ) |