Step |
Hyp |
Ref |
Expression |
0 |
|
cnacs |
|- NoeACS |
1 |
|
vx |
|- x |
2 |
|
cvv |
|- _V |
3 |
|
vc |
|- c |
4 |
|
cacs |
|- ACS |
5 |
1
|
cv |
|- x |
6 |
5 4
|
cfv |
|- ( ACS ` x ) |
7 |
|
vs |
|- s |
8 |
3
|
cv |
|- c |
9 |
|
vg |
|- g |
10 |
5
|
cpw |
|- ~P x |
11 |
|
cfn |
|- Fin |
12 |
10 11
|
cin |
|- ( ~P x i^i Fin ) |
13 |
7
|
cv |
|- s |
14 |
|
cmrc |
|- mrCls |
15 |
8 14
|
cfv |
|- ( mrCls ` c ) |
16 |
9
|
cv |
|- g |
17 |
16 15
|
cfv |
|- ( ( mrCls ` c ) ` g ) |
18 |
13 17
|
wceq |
|- s = ( ( mrCls ` c ) ` g ) |
19 |
18 9 12
|
wrex |
|- E. g e. ( ~P x i^i Fin ) s = ( ( mrCls ` c ) ` g ) |
20 |
19 7 8
|
wral |
|- A. s e. c E. g e. ( ~P x i^i Fin ) s = ( ( mrCls ` c ) ` g ) |
21 |
20 3 6
|
crab |
|- { c e. ( ACS ` x ) | A. s e. c E. g e. ( ~P x i^i Fin ) s = ( ( mrCls ` c ) ` g ) } |
22 |
1 2 21
|
cmpt |
|- ( x e. _V |-> { c e. ( ACS ` x ) | A. s e. c E. g e. ( ~P x i^i Fin ) s = ( ( mrCls ` c ) ` g ) } ) |
23 |
0 22
|
wceq |
|- NoeACS = ( x e. _V |-> { c e. ( ACS ` x ) | A. s e. c E. g e. ( ~P x i^i Fin ) s = ( ( mrCls ` c ) ` g ) } ) |