Step |
Hyp |
Ref |
Expression |
0 |
|
cnat |
|- Nat |
1 |
|
vt |
|- t |
2 |
|
ccat |
|- Cat |
3 |
|
vu |
|- u |
4 |
|
vf |
|- f |
5 |
1
|
cv |
|- t |
6 |
|
cfunc |
|- Func |
7 |
3
|
cv |
|- u |
8 |
5 7 6
|
co |
|- ( t Func u ) |
9 |
|
vg |
|- g |
10 |
|
c1st |
|- 1st |
11 |
4
|
cv |
|- f |
12 |
11 10
|
cfv |
|- ( 1st ` f ) |
13 |
|
vr |
|- r |
14 |
9
|
cv |
|- g |
15 |
14 10
|
cfv |
|- ( 1st ` g ) |
16 |
|
vs |
|- s |
17 |
|
va |
|- a |
18 |
|
vx |
|- x |
19 |
|
cbs |
|- Base |
20 |
5 19
|
cfv |
|- ( Base ` t ) |
21 |
13
|
cv |
|- r |
22 |
18
|
cv |
|- x |
23 |
22 21
|
cfv |
|- ( r ` x ) |
24 |
|
chom |
|- Hom |
25 |
7 24
|
cfv |
|- ( Hom ` u ) |
26 |
16
|
cv |
|- s |
27 |
22 26
|
cfv |
|- ( s ` x ) |
28 |
23 27 25
|
co |
|- ( ( r ` x ) ( Hom ` u ) ( s ` x ) ) |
29 |
18 20 28
|
cixp |
|- X_ x e. ( Base ` t ) ( ( r ` x ) ( Hom ` u ) ( s ` x ) ) |
30 |
|
vy |
|- y |
31 |
|
vh |
|- h |
32 |
5 24
|
cfv |
|- ( Hom ` t ) |
33 |
30
|
cv |
|- y |
34 |
22 33 32
|
co |
|- ( x ( Hom ` t ) y ) |
35 |
17
|
cv |
|- a |
36 |
33 35
|
cfv |
|- ( a ` y ) |
37 |
33 21
|
cfv |
|- ( r ` y ) |
38 |
23 37
|
cop |
|- <. ( r ` x ) , ( r ` y ) >. |
39 |
|
cco |
|- comp |
40 |
7 39
|
cfv |
|- ( comp ` u ) |
41 |
33 26
|
cfv |
|- ( s ` y ) |
42 |
38 41 40
|
co |
|- ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) |
43 |
|
c2nd |
|- 2nd |
44 |
11 43
|
cfv |
|- ( 2nd ` f ) |
45 |
22 33 44
|
co |
|- ( x ( 2nd ` f ) y ) |
46 |
31
|
cv |
|- h |
47 |
46 45
|
cfv |
|- ( ( x ( 2nd ` f ) y ) ` h ) |
48 |
36 47 42
|
co |
|- ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) |
49 |
14 43
|
cfv |
|- ( 2nd ` g ) |
50 |
22 33 49
|
co |
|- ( x ( 2nd ` g ) y ) |
51 |
46 50
|
cfv |
|- ( ( x ( 2nd ` g ) y ) ` h ) |
52 |
23 27
|
cop |
|- <. ( r ` x ) , ( s ` x ) >. |
53 |
52 41 40
|
co |
|- ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) |
54 |
22 35
|
cfv |
|- ( a ` x ) |
55 |
51 54 53
|
co |
|- ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) |
56 |
48 55
|
wceq |
|- ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) |
57 |
56 31 34
|
wral |
|- A. h e. ( x ( Hom ` t ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) |
58 |
57 30 20
|
wral |
|- A. y e. ( Base ` t ) A. h e. ( x ( Hom ` t ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) |
59 |
58 18 20
|
wral |
|- A. x e. ( Base ` t ) A. y e. ( Base ` t ) A. h e. ( x ( Hom ` t ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) |
60 |
59 17 29
|
crab |
|- { a e. X_ x e. ( Base ` t ) ( ( r ` x ) ( Hom ` u ) ( s ` x ) ) | A. x e. ( Base ` t ) A. y e. ( Base ` t ) A. h e. ( x ( Hom ` t ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) } |
61 |
16 15 60
|
csb |
|- [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` t ) ( ( r ` x ) ( Hom ` u ) ( s ` x ) ) | A. x e. ( Base ` t ) A. y e. ( Base ` t ) A. h e. ( x ( Hom ` t ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) } |
62 |
13 12 61
|
csb |
|- [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` t ) ( ( r ` x ) ( Hom ` u ) ( s ` x ) ) | A. x e. ( Base ` t ) A. y e. ( Base ` t ) A. h e. ( x ( Hom ` t ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) } |
63 |
4 9 8 8 62
|
cmpo |
|- ( f e. ( t Func u ) , g e. ( t Func u ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` t ) ( ( r ` x ) ( Hom ` u ) ( s ` x ) ) | A. x e. ( Base ` t ) A. y e. ( Base ` t ) A. h e. ( x ( Hom ` t ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) } ) |
64 |
1 3 2 2 63
|
cmpo |
|- ( t e. Cat , u e. Cat |-> ( f e. ( t Func u ) , g e. ( t Func u ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` t ) ( ( r ` x ) ( Hom ` u ) ( s ` x ) ) | A. x e. ( Base ` t ) A. y e. ( Base ` t ) A. h e. ( x ( Hom ` t ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) } ) ) |
65 |
0 64
|
wceq |
|- Nat = ( t e. Cat , u e. Cat |-> ( f e. ( t Func u ) , g e. ( t Func u ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` t ) ( ( r ` x ) ( Hom ` u ) ( s ` x ) ) | A. x e. ( Base ` t ) A. y e. ( Base ` t ) A. h e. ( x ( Hom ` t ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) } ) ) |