Description: Define the (open)neighborhood resp. the class of all neighbors of a vertex (in a graph), see definition in section I.1 of Bollobas p. 3 or definition in section 1.1 of Diestel p. 3. The neighborhood/neighbors of a vertex are all (other) vertices which are connected with this vertex by an edge. In contrast to a closed neighborhood, a vertex is not a neighbor of itself. This definition is applicable even for arbitrary hypergraphs.
Remark: To distinguish this definition from other definitions for neighborhoods resp. neighbors (e.g., nei in Topology, see df-nei ), the suffix Vtx is added to the class constant NeighbVtx . (Contributed by Alexander van der Vekens and Mario Carneiro, 7-Oct-2017) (Revised by AV, 24-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | df-nbgr | |- NeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> { n e. ( ( Vtx ` g ) \ { v } ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cnbgr | |- NeighbVtx |
|
1 | vg | |- g |
|
2 | cvv | |- _V |
|
3 | vv | |- v |
|
4 | cvtx | |- Vtx |
|
5 | 1 | cv | |- g |
6 | 5 4 | cfv | |- ( Vtx ` g ) |
7 | vn | |- n |
|
8 | 3 | cv | |- v |
9 | 8 | csn | |- { v } |
10 | 6 9 | cdif | |- ( ( Vtx ` g ) \ { v } ) |
11 | ve | |- e |
|
12 | cedg | |- Edg |
|
13 | 5 12 | cfv | |- ( Edg ` g ) |
14 | 7 | cv | |- n |
15 | 8 14 | cpr | |- { v , n } |
16 | 11 | cv | |- e |
17 | 15 16 | wss | |- { v , n } C_ e |
18 | 17 11 13 | wrex | |- E. e e. ( Edg ` g ) { v , n } C_ e |
19 | 18 7 10 | crab | |- { n e. ( ( Vtx ` g ) \ { v } ) | E. e e. ( Edg ` g ) { v , n } C_ e } |
20 | 1 3 2 6 19 | cmpo | |- ( g e. _V , v e. ( Vtx ` g ) |-> { n e. ( ( Vtx ` g ) \ { v } ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) |
21 | 0 20 | wceq | |- NeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> { n e. ( ( Vtx ` g ) \ { v } ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) |