Metamath Proof Explorer


Definition df-nei

Description: Define a function on topologies whose value is a map from a subset to its neighborhoods. (Contributed by NM, 11-Feb-2007)

Ref Expression
Assertion df-nei
|- nei = ( j e. Top |-> ( x e. ~P U. j |-> { y e. ~P U. j | E. g e. j ( x C_ g /\ g C_ y ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnei
 |-  nei
1 vj
 |-  j
2 ctop
 |-  Top
3 vx
 |-  x
4 1 cv
 |-  j
5 4 cuni
 |-  U. j
6 5 cpw
 |-  ~P U. j
7 vy
 |-  y
8 vg
 |-  g
9 3 cv
 |-  x
10 8 cv
 |-  g
11 9 10 wss
 |-  x C_ g
12 7 cv
 |-  y
13 10 12 wss
 |-  g C_ y
14 11 13 wa
 |-  ( x C_ g /\ g C_ y )
15 14 8 4 wrex
 |-  E. g e. j ( x C_ g /\ g C_ y )
16 15 7 6 crab
 |-  { y e. ~P U. j | E. g e. j ( x C_ g /\ g C_ y ) }
17 3 6 16 cmpt
 |-  ( x e. ~P U. j |-> { y e. ~P U. j | E. g e. j ( x C_ g /\ g C_ y ) } )
18 1 2 17 cmpt
 |-  ( j e. Top |-> ( x e. ~P U. j |-> { y e. ~P U. j | E. g e. j ( x C_ g /\ g C_ y ) } ) )
19 0 18 wceq
 |-  nei = ( j e. Top |-> ( x e. ~P U. j |-> { y e. ~P U. j | E. g e. j ( x C_ g /\ g C_ y ) } ) )