Description: Define the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nlfn | |- null = ( t e. ( CC ^m ~H ) |-> ( `' t " { 0 } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cnl | |- null | |
| 1 | vt | |- t | |
| 2 | cc | |- CC | |
| 3 | cmap | |- ^m | |
| 4 | chba | |- ~H | |
| 5 | 2 4 3 | co | |- ( CC ^m ~H ) | 
| 6 | 1 | cv | |- t | 
| 7 | 6 | ccnv | |- `' t | 
| 8 | cc0 | |- 0 | |
| 9 | 8 | csn |  |-  { 0 } | 
| 10 | 7 9 | cima |  |-  ( `' t " { 0 } ) | 
| 11 | 1 5 10 | cmpt |  |-  ( t e. ( CC ^m ~H ) |-> ( `' t " { 0 } ) ) | 
| 12 | 0 11 | wceq |  |-  null = ( t e. ( CC ^m ~H ) |-> ( `' t " { 0 } ) ) |