Metamath Proof Explorer


Definition df-nlly

Description: Define a space that is n-locally A , where A is a topological property like "compact", "connected", or "path-connected". A topological space is n-locally A if every neighborhood of a point contains a subneighborhood that is A in the subspace topology.

The terminology "n-locally", where 'n' stands for "neighborhood", is not standard, although this is sometimes called "weakly locally A ". The reason for the distinction is that some notions only make sense for arbitrary neighborhoods (such as "locally compact", which is actually N-Locally Comp in our terminology - open compact sets are not very useful), while others such as "locally connected" are strictly weaker notions if the neighborhoods are not required to be open. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion df-nlly
|- N-Locally A = { j e. Top | A. x e. j A. y e. x E. u e. ( ( ( nei ` j ) ` { y } ) i^i ~P x ) ( j |`t u ) e. A }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 0 cnlly
 |-  N-Locally A
2 vj
 |-  j
3 ctop
 |-  Top
4 vx
 |-  x
5 2 cv
 |-  j
6 vy
 |-  y
7 4 cv
 |-  x
8 vu
 |-  u
9 cnei
 |-  nei
10 5 9 cfv
 |-  ( nei ` j )
11 6 cv
 |-  y
12 11 csn
 |-  { y }
13 12 10 cfv
 |-  ( ( nei ` j ) ` { y } )
14 7 cpw
 |-  ~P x
15 13 14 cin
 |-  ( ( ( nei ` j ) ` { y } ) i^i ~P x )
16 crest
 |-  |`t
17 8 cv
 |-  u
18 5 17 16 co
 |-  ( j |`t u )
19 18 0 wcel
 |-  ( j |`t u ) e. A
20 19 8 15 wrex
 |-  E. u e. ( ( ( nei ` j ) ` { y } ) i^i ~P x ) ( j |`t u ) e. A
21 20 6 7 wral
 |-  A. y e. x E. u e. ( ( ( nei ` j ) ` { y } ) i^i ~P x ) ( j |`t u ) e. A
22 21 4 5 wral
 |-  A. x e. j A. y e. x E. u e. ( ( ( nei ` j ) ` { y } ) i^i ~P x ) ( j |`t u ) e. A
23 22 2 3 crab
 |-  { j e. Top | A. x e. j A. y e. x E. u e. ( ( ( nei ` j ) ` { y } ) i^i ~P x ) ( j |`t u ) e. A }
24 1 23 wceq
 |-  N-Locally A = { j e. Top | A. x e. j A. y e. x E. u e. ( ( ( nei ` j ) ` { y } ) i^i ~P x ) ( j |`t u ) e. A }