Description: Define a space that is n-locally A , where A is a topological property like "compact", "connected", or "path-connected". A topological space is n-locally A if every neighborhood of a point contains a subneighborhood that is A in the subspace topology.
The terminology "n-locally", where 'n' stands for "neighborhood", is not standard, although this is sometimes called "weakly locally A ". The reason for the distinction is that some notions only make sense for arbitrary neighborhoods (such as "locally compact", which is actually N-Locally Comp in our terminology - open compact sets are not very useful), while others such as "locally connected" are strictly weaker notions if the neighborhoods are not required to be open. (Contributed by Mario Carneiro, 2-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-nlly | |- N-Locally A = { j e. Top | A. x e. j A. y e. x E. u e. ( ( ( nei ` j ) ` { y } ) i^i ~P x ) ( j |`t u ) e. A } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cA | |- A |
|
1 | 0 | cnlly | |- N-Locally A |
2 | vj | |- j |
|
3 | ctop | |- Top |
|
4 | vx | |- x |
|
5 | 2 | cv | |- j |
6 | vy | |- y |
|
7 | 4 | cv | |- x |
8 | vu | |- u |
|
9 | cnei | |- nei |
|
10 | 5 9 | cfv | |- ( nei ` j ) |
11 | 6 | cv | |- y |
12 | 11 | csn | |- { y } |
13 | 12 10 | cfv | |- ( ( nei ` j ) ` { y } ) |
14 | 7 | cpw | |- ~P x |
15 | 13 14 | cin | |- ( ( ( nei ` j ) ` { y } ) i^i ~P x ) |
16 | crest | |- |`t |
|
17 | 8 | cv | |- u |
18 | 5 17 16 | co | |- ( j |`t u ) |
19 | 18 0 | wcel | |- ( j |`t u ) e. A |
20 | 19 8 15 | wrex | |- E. u e. ( ( ( nei ` j ) ` { y } ) i^i ~P x ) ( j |`t u ) e. A |
21 | 20 6 7 | wral | |- A. y e. x E. u e. ( ( ( nei ` j ) ` { y } ) i^i ~P x ) ( j |`t u ) e. A |
22 | 21 4 5 | wral | |- A. x e. j A. y e. x E. u e. ( ( ( nei ` j ) ` { y } ) i^i ~P x ) ( j |`t u ) e. A |
23 | 22 2 3 | crab | |- { j e. Top | A. x e. j A. y e. x E. u e. ( ( ( nei ` j ) ` { y } ) i^i ~P x ) ( j |`t u ) e. A } |
24 | 1 23 | wceq | |- N-Locally A = { j e. Top | A. x e. j A. y e. x E. u e. ( ( ( nei ` j ) ` { y } ) i^i ~P x ) ( j |`t u ) e. A } |