Metamath Proof Explorer


Definition df-nm

Description: Define the norm on a group or ring (when it makes sense) in terms of the distance to zero. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Assertion df-nm
|- norm = ( w e. _V |-> ( x e. ( Base ` w ) |-> ( x ( dist ` w ) ( 0g ` w ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnm
 |-  norm
1 vw
 |-  w
2 cvv
 |-  _V
3 vx
 |-  x
4 cbs
 |-  Base
5 1 cv
 |-  w
6 5 4 cfv
 |-  ( Base ` w )
7 3 cv
 |-  x
8 cds
 |-  dist
9 5 8 cfv
 |-  ( dist ` w )
10 c0g
 |-  0g
11 5 10 cfv
 |-  ( 0g ` w )
12 7 11 9 co
 |-  ( x ( dist ` w ) ( 0g ` w ) )
13 3 6 12 cmpt
 |-  ( x e. ( Base ` w ) |-> ( x ( dist ` w ) ( 0g ` w ) ) )
14 1 2 13 cmpt
 |-  ( w e. _V |-> ( x e. ( Base ` w ) |-> ( x ( dist ` w ) ( 0g ` w ) ) ) )
15 0 14 wceq
 |-  norm = ( w e. _V |-> ( x e. ( Base ` w ) |-> ( x ( dist ` w ) ( 0g ` w ) ) ) )