Description: Define the norm on a group or ring (when it makes sense) in terms of the distance to zero. (Contributed by Mario Carneiro, 2-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-nm | |- norm = ( w e. _V |-> ( x e. ( Base ` w ) |-> ( x ( dist ` w ) ( 0g ` w ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cnm | |- norm |
|
1 | vw | |- w |
|
2 | cvv | |- _V |
|
3 | vx | |- x |
|
4 | cbs | |- Base |
|
5 | 1 | cv | |- w |
6 | 5 4 | cfv | |- ( Base ` w ) |
7 | 3 | cv | |- x |
8 | cds | |- dist |
|
9 | 5 8 | cfv | |- ( dist ` w ) |
10 | c0g | |- 0g |
|
11 | 5 10 | cfv | |- ( 0g ` w ) |
12 | 7 11 9 | co | |- ( x ( dist ` w ) ( 0g ` w ) ) |
13 | 3 6 12 | cmpt | |- ( x e. ( Base ` w ) |-> ( x ( dist ` w ) ( 0g ` w ) ) ) |
14 | 1 2 13 | cmpt | |- ( w e. _V |-> ( x e. ( Base ` w ) |-> ( x ( dist ` w ) ( 0g ` w ) ) ) ) |
15 | 0 14 | wceq | |- norm = ( w e. _V |-> ( x e. ( Base ` w ) |-> ( x ( dist ` w ) ( 0g ` w ) ) ) ) |