| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cnmf |
|- normfn |
| 1 |
|
vt |
|- t |
| 2 |
|
cc |
|- CC |
| 3 |
|
cmap |
|- ^m |
| 4 |
|
chba |
|- ~H |
| 5 |
2 4 3
|
co |
|- ( CC ^m ~H ) |
| 6 |
|
vx |
|- x |
| 7 |
|
vz |
|- z |
| 8 |
|
cno |
|- normh |
| 9 |
7
|
cv |
|- z |
| 10 |
9 8
|
cfv |
|- ( normh ` z ) |
| 11 |
|
cle |
|- <_ |
| 12 |
|
c1 |
|- 1 |
| 13 |
10 12 11
|
wbr |
|- ( normh ` z ) <_ 1 |
| 14 |
6
|
cv |
|- x |
| 15 |
|
cabs |
|- abs |
| 16 |
1
|
cv |
|- t |
| 17 |
9 16
|
cfv |
|- ( t ` z ) |
| 18 |
17 15
|
cfv |
|- ( abs ` ( t ` z ) ) |
| 19 |
14 18
|
wceq |
|- x = ( abs ` ( t ` z ) ) |
| 20 |
13 19
|
wa |
|- ( ( normh ` z ) <_ 1 /\ x = ( abs ` ( t ` z ) ) ) |
| 21 |
20 7 4
|
wrex |
|- E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( abs ` ( t ` z ) ) ) |
| 22 |
21 6
|
cab |
|- { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( abs ` ( t ` z ) ) ) } |
| 23 |
|
cxr |
|- RR* |
| 24 |
|
clt |
|- < |
| 25 |
22 23 24
|
csup |
|- sup ( { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( abs ` ( t ` z ) ) ) } , RR* , < ) |
| 26 |
1 5 25
|
cmpt |
|- ( t e. ( CC ^m ~H ) |-> sup ( { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( abs ` ( t ` z ) ) ) } , RR* , < ) ) |
| 27 |
0 26
|
wceq |
|- normfn = ( t e. ( CC ^m ~H ) |-> sup ( { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( abs ` ( t ` z ) ) ) } , RR* , < ) ) |