Step |
Hyp |
Ref |
Expression |
0 |
|
cnmf |
|- normfn |
1 |
|
vt |
|- t |
2 |
|
cc |
|- CC |
3 |
|
cmap |
|- ^m |
4 |
|
chba |
|- ~H |
5 |
2 4 3
|
co |
|- ( CC ^m ~H ) |
6 |
|
vx |
|- x |
7 |
|
vz |
|- z |
8 |
|
cno |
|- normh |
9 |
7
|
cv |
|- z |
10 |
9 8
|
cfv |
|- ( normh ` z ) |
11 |
|
cle |
|- <_ |
12 |
|
c1 |
|- 1 |
13 |
10 12 11
|
wbr |
|- ( normh ` z ) <_ 1 |
14 |
6
|
cv |
|- x |
15 |
|
cabs |
|- abs |
16 |
1
|
cv |
|- t |
17 |
9 16
|
cfv |
|- ( t ` z ) |
18 |
17 15
|
cfv |
|- ( abs ` ( t ` z ) ) |
19 |
14 18
|
wceq |
|- x = ( abs ` ( t ` z ) ) |
20 |
13 19
|
wa |
|- ( ( normh ` z ) <_ 1 /\ x = ( abs ` ( t ` z ) ) ) |
21 |
20 7 4
|
wrex |
|- E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( abs ` ( t ` z ) ) ) |
22 |
21 6
|
cab |
|- { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( abs ` ( t ` z ) ) ) } |
23 |
|
cxr |
|- RR* |
24 |
|
clt |
|- < |
25 |
22 23 24
|
csup |
|- sup ( { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( abs ` ( t ` z ) ) ) } , RR* , < ) |
26 |
1 5 25
|
cmpt |
|- ( t e. ( CC ^m ~H ) |-> sup ( { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( abs ` ( t ` z ) ) ) } , RR* , < ) ) |
27 |
0 26
|
wceq |
|- normfn = ( t e. ( CC ^m ~H ) |-> sup ( { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( abs ` ( t ` z ) ) ) } , RR* , < ) ) |