Metamath Proof Explorer


Definition df-nmhm

Description: Define a normed module homomorphism, also known as a bounded linear operator. This is a module homomorphism (a linear function) such that the operator norm is finite, or equivalently there is a constant c such that... (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Assertion df-nmhm
|- NMHom = ( s e. NrmMod , t e. NrmMod |-> ( ( s LMHom t ) i^i ( s NGHom t ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnmhm
 |-  NMHom
1 vs
 |-  s
2 cnlm
 |-  NrmMod
3 vt
 |-  t
4 1 cv
 |-  s
5 clmhm
 |-  LMHom
6 3 cv
 |-  t
7 4 6 5 co
 |-  ( s LMHom t )
8 cnghm
 |-  NGHom
9 4 6 8 co
 |-  ( s NGHom t )
10 7 9 cin
 |-  ( ( s LMHom t ) i^i ( s NGHom t ) )
11 1 3 2 2 10 cmpo
 |-  ( s e. NrmMod , t e. NrmMod |-> ( ( s LMHom t ) i^i ( s NGHom t ) ) )
12 0 11 wceq
 |-  NMHom = ( s e. NrmMod , t e. NrmMod |-> ( ( s LMHom t ) i^i ( s NGHom t ) ) )