| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cnmo |  |-  normOp | 
						
							| 1 |  | vs |  |-  s | 
						
							| 2 |  | cngp |  |-  NrmGrp | 
						
							| 3 |  | vt |  |-  t | 
						
							| 4 |  | vf |  |-  f | 
						
							| 5 | 1 | cv |  |-  s | 
						
							| 6 |  | cghm |  |-  GrpHom | 
						
							| 7 | 3 | cv |  |-  t | 
						
							| 8 | 5 7 6 | co |  |-  ( s GrpHom t ) | 
						
							| 9 |  | vr |  |-  r | 
						
							| 10 |  | cc0 |  |-  0 | 
						
							| 11 |  | cico |  |-  [,) | 
						
							| 12 |  | cpnf |  |-  +oo | 
						
							| 13 | 10 12 11 | co |  |-  ( 0 [,) +oo ) | 
						
							| 14 |  | vx |  |-  x | 
						
							| 15 |  | cbs |  |-  Base | 
						
							| 16 | 5 15 | cfv |  |-  ( Base ` s ) | 
						
							| 17 |  | cnm |  |-  norm | 
						
							| 18 | 7 17 | cfv |  |-  ( norm ` t ) | 
						
							| 19 | 4 | cv |  |-  f | 
						
							| 20 | 14 | cv |  |-  x | 
						
							| 21 | 20 19 | cfv |  |-  ( f ` x ) | 
						
							| 22 | 21 18 | cfv |  |-  ( ( norm ` t ) ` ( f ` x ) ) | 
						
							| 23 |  | cle |  |-  <_ | 
						
							| 24 | 9 | cv |  |-  r | 
						
							| 25 |  | cmul |  |-  x. | 
						
							| 26 | 5 17 | cfv |  |-  ( norm ` s ) | 
						
							| 27 | 20 26 | cfv |  |-  ( ( norm ` s ) ` x ) | 
						
							| 28 | 24 27 25 | co |  |-  ( r x. ( ( norm ` s ) ` x ) ) | 
						
							| 29 | 22 28 23 | wbr |  |-  ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) | 
						
							| 30 | 29 14 16 | wral |  |-  A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) | 
						
							| 31 | 30 9 13 | crab |  |-  { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } | 
						
							| 32 |  | cxr |  |-  RR* | 
						
							| 33 |  | clt |  |-  < | 
						
							| 34 | 31 32 33 | cinf |  |-  inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } , RR* , < ) | 
						
							| 35 | 4 8 34 | cmpt |  |-  ( f e. ( s GrpHom t ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } , RR* , < ) ) | 
						
							| 36 | 1 3 2 2 35 | cmpo |  |-  ( s e. NrmGrp , t e. NrmGrp |-> ( f e. ( s GrpHom t ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } , RR* , < ) ) ) | 
						
							| 37 | 0 36 | wceq |  |-  normOp = ( s e. NrmGrp , t e. NrmGrp |-> ( f e. ( s GrpHom t ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } , RR* , < ) ) ) |