| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cnop |
|- normop |
| 1 |
|
vt |
|- t |
| 2 |
|
chba |
|- ~H |
| 3 |
|
cmap |
|- ^m |
| 4 |
2 2 3
|
co |
|- ( ~H ^m ~H ) |
| 5 |
|
vx |
|- x |
| 6 |
|
vz |
|- z |
| 7 |
|
cno |
|- normh |
| 8 |
6
|
cv |
|- z |
| 9 |
8 7
|
cfv |
|- ( normh ` z ) |
| 10 |
|
cle |
|- <_ |
| 11 |
|
c1 |
|- 1 |
| 12 |
9 11 10
|
wbr |
|- ( normh ` z ) <_ 1 |
| 13 |
5
|
cv |
|- x |
| 14 |
1
|
cv |
|- t |
| 15 |
8 14
|
cfv |
|- ( t ` z ) |
| 16 |
15 7
|
cfv |
|- ( normh ` ( t ` z ) ) |
| 17 |
13 16
|
wceq |
|- x = ( normh ` ( t ` z ) ) |
| 18 |
12 17
|
wa |
|- ( ( normh ` z ) <_ 1 /\ x = ( normh ` ( t ` z ) ) ) |
| 19 |
18 6 2
|
wrex |
|- E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( normh ` ( t ` z ) ) ) |
| 20 |
19 5
|
cab |
|- { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( normh ` ( t ` z ) ) ) } |
| 21 |
|
cxr |
|- RR* |
| 22 |
|
clt |
|- < |
| 23 |
20 21 22
|
csup |
|- sup ( { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( normh ` ( t ` z ) ) ) } , RR* , < ) |
| 24 |
1 4 23
|
cmpt |
|- ( t e. ( ~H ^m ~H ) |-> sup ( { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( normh ` ( t ` z ) ) ) } , RR* , < ) ) |
| 25 |
0 24
|
wceq |
|- normop = ( t e. ( ~H ^m ~H ) |-> sup ( { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( normh ` ( t ` z ) ) ) } , RR* , < ) ) |