| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cF |
|- F |
| 1 |
0
|
cnorec2 |
|- norec2 ( F ) |
| 2 |
|
va |
|- a |
| 3 |
|
vb |
|- b |
| 4 |
2
|
cv |
|- a |
| 5 |
|
csur |
|- No |
| 6 |
5 5
|
cxp |
|- ( No X. No ) |
| 7 |
4 6
|
wcel |
|- a e. ( No X. No ) |
| 8 |
3
|
cv |
|- b |
| 9 |
8 6
|
wcel |
|- b e. ( No X. No ) |
| 10 |
|
c1st |
|- 1st |
| 11 |
4 10
|
cfv |
|- ( 1st ` a ) |
| 12 |
|
vc |
|- c |
| 13 |
|
vd |
|- d |
| 14 |
12
|
cv |
|- c |
| 15 |
|
cleft |
|- _Left |
| 16 |
13
|
cv |
|- d |
| 17 |
16 15
|
cfv |
|- ( _Left ` d ) |
| 18 |
|
cright |
|- _Right |
| 19 |
16 18
|
cfv |
|- ( _Right ` d ) |
| 20 |
17 19
|
cun |
|- ( ( _Left ` d ) u. ( _Right ` d ) ) |
| 21 |
14 20
|
wcel |
|- c e. ( ( _Left ` d ) u. ( _Right ` d ) ) |
| 22 |
21 12 13
|
copab |
|- { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } |
| 23 |
8 10
|
cfv |
|- ( 1st ` b ) |
| 24 |
11 23 22
|
wbr |
|- ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) |
| 25 |
11 23
|
wceq |
|- ( 1st ` a ) = ( 1st ` b ) |
| 26 |
24 25
|
wo |
|- ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) |
| 27 |
|
c2nd |
|- 2nd |
| 28 |
4 27
|
cfv |
|- ( 2nd ` a ) |
| 29 |
8 27
|
cfv |
|- ( 2nd ` b ) |
| 30 |
28 29 22
|
wbr |
|- ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) |
| 31 |
28 29
|
wceq |
|- ( 2nd ` a ) = ( 2nd ` b ) |
| 32 |
30 31
|
wo |
|- ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) |
| 33 |
4 8
|
wne |
|- a =/= b |
| 34 |
26 32 33
|
w3a |
|- ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) |
| 35 |
7 9 34
|
w3a |
|- ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) |
| 36 |
35 2 3
|
copab |
|- { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } |
| 37 |
6 36 0
|
cfrecs |
|- frecs ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , F ) |
| 38 |
1 37
|
wceq |
|- norec2 ( F ) = frecs ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , F ) |