Step |
Hyp |
Ref |
Expression |
0 |
|
cF |
|- F |
1 |
0
|
cnorec2 |
|- norec2 ( F ) |
2 |
|
va |
|- a |
3 |
|
vb |
|- b |
4 |
2
|
cv |
|- a |
5 |
|
csur |
|- No |
6 |
5 5
|
cxp |
|- ( No X. No ) |
7 |
4 6
|
wcel |
|- a e. ( No X. No ) |
8 |
3
|
cv |
|- b |
9 |
8 6
|
wcel |
|- b e. ( No X. No ) |
10 |
|
c1st |
|- 1st |
11 |
4 10
|
cfv |
|- ( 1st ` a ) |
12 |
|
vc |
|- c |
13 |
|
vd |
|- d |
14 |
12
|
cv |
|- c |
15 |
|
cleft |
|- _Left |
16 |
13
|
cv |
|- d |
17 |
16 15
|
cfv |
|- ( _Left ` d ) |
18 |
|
cright |
|- _Right |
19 |
16 18
|
cfv |
|- ( _Right ` d ) |
20 |
17 19
|
cun |
|- ( ( _Left ` d ) u. ( _Right ` d ) ) |
21 |
14 20
|
wcel |
|- c e. ( ( _Left ` d ) u. ( _Right ` d ) ) |
22 |
21 12 13
|
copab |
|- { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } |
23 |
8 10
|
cfv |
|- ( 1st ` b ) |
24 |
11 23 22
|
wbr |
|- ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) |
25 |
11 23
|
wceq |
|- ( 1st ` a ) = ( 1st ` b ) |
26 |
24 25
|
wo |
|- ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) |
27 |
|
c2nd |
|- 2nd |
28 |
4 27
|
cfv |
|- ( 2nd ` a ) |
29 |
8 27
|
cfv |
|- ( 2nd ` b ) |
30 |
28 29 22
|
wbr |
|- ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) |
31 |
28 29
|
wceq |
|- ( 2nd ` a ) = ( 2nd ` b ) |
32 |
30 31
|
wo |
|- ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) |
33 |
4 8
|
wne |
|- a =/= b |
34 |
26 32 33
|
w3a |
|- ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) |
35 |
7 9 34
|
w3a |
|- ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) |
36 |
35 2 3
|
copab |
|- { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } |
37 |
6 36 0
|
cfrecs |
|- frecs ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , F ) |
38 |
1 37
|
wceq |
|- norec2 ( F ) = frecs ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , F ) |