Metamath Proof Explorer


Definition df-np

Description: Define the set of positive reals. A "Dedekind cut" is a partition of the positive rational numbers into two classes such that all the numbers of one class are less than all the numbers of the other. A positive real is defined as the lower class of a Dedekind cut. Definition 9-3.1 of Gleason p. 121. (Note: This is a "temporary" definition used in the construction of complex numbers df-c , and is intended to be used only by the construction.) (Contributed by NM, 31-Oct-1995) (New usage is discouraged.)

Ref Expression
Assertion df-np
|- P. = { x | ( ( (/) C. x /\ x C. Q. ) /\ A. y e. x ( A. z ( z  z e. x ) /\ E. z e. x y 

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnp
 |-  P.
1 vx
 |-  x
2 c0
 |-  (/)
3 1 cv
 |-  x
4 2 3 wpss
 |-  (/) C. x
5 cnq
 |-  Q.
6 3 5 wpss
 |-  x C. Q.
7 4 6 wa
 |-  ( (/) C. x /\ x C. Q. )
8 vy
 |-  y
9 vz
 |-  z
10 9 cv
 |-  z
11 cltq
 |-  
12 8 cv
 |-  y
13 10 12 11 wbr
 |-  z 
14 10 3 wcel
 |-  z e. x
15 13 14 wi
 |-  ( z  z e. x )
16 15 9 wal
 |-  A. z ( z  z e. x )
17 12 10 11 wbr
 |-  y 
18 17 9 3 wrex
 |-  E. z e. x y 
19 16 18 wa
 |-  ( A. z ( z  z e. x ) /\ E. z e. x y 
20 19 8 3 wral
 |-  A. y e. x ( A. z ( z  z e. x ) /\ E. z e. x y 
21 7 20 wa
 |-  ( ( (/) C. x /\ x C. Q. ) /\ A. y e. x ( A. z ( z  z e. x ) /\ E. z e. x y 
22 21 1 cab
 |-  { x | ( ( (/) C. x /\ x C. Q. ) /\ A. y e. x ( A. z ( z  z e. x ) /\ E. z e. x y 
23 0 22 wceq
 |-  P. = { x | ( ( (/) C. x /\ x C. Q. ) /\ A. y e. x ( A. z ( z  z e. x ) /\ E. z e. x y