Description: Define the set of positive reals. A "Dedekind cut" is a partition of the positive rational numbers into two classes such that all the numbers of one class are less than all the numbers of the other. A positive real is defined as the lower class of a Dedekind cut. Definition 9-3.1 of Gleason p. 121. (Note: This is a "temporary" definition used in the construction of complex numbers df-c , and is intended to be used only by the construction.) (Contributed by NM, 31-Oct-1995) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-np | |- P. = { x | ( ( (/) C. x /\ x C. Q. ) /\ A. y e. x ( A. z ( zz e. x ) /\ E. z e. x y |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cnp | |- P. |
|
1 | vx | |- x |
|
2 | c0 | |- (/) |
|
3 | 1 | cv | |- x |
4 | 2 3 | wpss | |- (/) C. x |
5 | cnq | |- Q. |
|
6 | 3 5 | wpss | |- x C. Q. |
7 | 4 6 | wa | |- ( (/) C. x /\ x C. Q. ) |
8 | vy | |- y |
|
9 | vz | |- z |
|
10 | 9 | cv | |- z |
11 | cltq | |- |
|
12 | 8 | cv | |- y |
13 | 10 12 11 | wbr | |- z |
14 | 10 3 | wcel | |- z e. x |
15 | 13 14 | wi | |- ( zz e. x ) |
16 | 15 9 | wal | |- A. z ( zz e. x ) |
17 | 12 10 11 | wbr | |- y |
18 | 17 9 3 | wrex | |- E. z e. x y |
19 | 16 18 | wa | |- ( A. z ( zz e. x ) /\ E. z e. x y |
20 | 19 8 3 | wral | |- A. y e. x ( A. z ( zz e. x ) /\ E. z e. x y |
21 | 7 20 | wa | |- ( ( (/) C. x /\ x C. Q. ) /\ A. y e. x ( A. z ( zz e. x ) /\ E. z e. x y |
22 | 21 1 | cab | |- { x | ( ( (/) C. x /\ x C. Q. ) /\ A. y e. x ( A. z ( zz e. x ) /\ E. z e. x y |
23 | 0 22 | wceq | |- P. = { x | ( ( (/) C. x /\ x C. Q. ) /\ A. y e. x ( A. z ( zz e. x ) /\ E. z e. x y |