Metamath Proof Explorer


Definition df-nrg

Description: A normed ring is a ring with an induced topology and metric such that the metric is translation-invariant and the norm (distance from 0) is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion df-nrg
|- NrmRing = { w e. NrmGrp | ( norm ` w ) e. ( AbsVal ` w ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnrg
 |-  NrmRing
1 vw
 |-  w
2 cngp
 |-  NrmGrp
3 cnm
 |-  norm
4 1 cv
 |-  w
5 4 3 cfv
 |-  ( norm ` w )
6 cabv
 |-  AbsVal
7 4 6 cfv
 |-  ( AbsVal ` w )
8 5 7 wcel
 |-  ( norm ` w ) e. ( AbsVal ` w )
9 8 1 2 crab
 |-  { w e. NrmGrp | ( norm ` w ) e. ( AbsVal ` w ) }
10 0 9 wceq
 |-  NrmRing = { w e. NrmGrp | ( norm ` w ) e. ( AbsVal ` w ) }