| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cnrm |  |-  Nrm | 
						
							| 1 |  | vj |  |-  j | 
						
							| 2 |  | ctop |  |-  Top | 
						
							| 3 |  | vx |  |-  x | 
						
							| 4 | 1 | cv |  |-  j | 
						
							| 5 |  | vy |  |-  y | 
						
							| 6 |  | ccld |  |-  Clsd | 
						
							| 7 | 4 6 | cfv |  |-  ( Clsd ` j ) | 
						
							| 8 | 3 | cv |  |-  x | 
						
							| 9 | 8 | cpw |  |-  ~P x | 
						
							| 10 | 7 9 | cin |  |-  ( ( Clsd ` j ) i^i ~P x ) | 
						
							| 11 |  | vz |  |-  z | 
						
							| 12 | 5 | cv |  |-  y | 
						
							| 13 | 11 | cv |  |-  z | 
						
							| 14 | 12 13 | wss |  |-  y C_ z | 
						
							| 15 |  | ccl |  |-  cls | 
						
							| 16 | 4 15 | cfv |  |-  ( cls ` j ) | 
						
							| 17 | 13 16 | cfv |  |-  ( ( cls ` j ) ` z ) | 
						
							| 18 | 17 8 | wss |  |-  ( ( cls ` j ) ` z ) C_ x | 
						
							| 19 | 14 18 | wa |  |-  ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) | 
						
							| 20 | 19 11 4 | wrex |  |-  E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) | 
						
							| 21 | 20 5 10 | wral |  |-  A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) | 
						
							| 22 | 21 3 4 | wral |  |-  A. x e. j A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) | 
						
							| 23 | 22 1 2 | crab |  |-  { j e. Top | A. x e. j A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) } | 
						
							| 24 | 0 23 | wceq |  |-  Nrm = { j e. Top | A. x e. j A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) } |