Step |
Hyp |
Ref |
Expression |
0 |
|
cnrm |
|- Nrm |
1 |
|
vj |
|- j |
2 |
|
ctop |
|- Top |
3 |
|
vx |
|- x |
4 |
1
|
cv |
|- j |
5 |
|
vy |
|- y |
6 |
|
ccld |
|- Clsd |
7 |
4 6
|
cfv |
|- ( Clsd ` j ) |
8 |
3
|
cv |
|- x |
9 |
8
|
cpw |
|- ~P x |
10 |
7 9
|
cin |
|- ( ( Clsd ` j ) i^i ~P x ) |
11 |
|
vz |
|- z |
12 |
5
|
cv |
|- y |
13 |
11
|
cv |
|- z |
14 |
12 13
|
wss |
|- y C_ z |
15 |
|
ccl |
|- cls |
16 |
4 15
|
cfv |
|- ( cls ` j ) |
17 |
13 16
|
cfv |
|- ( ( cls ` j ) ` z ) |
18 |
17 8
|
wss |
|- ( ( cls ` j ) ` z ) C_ x |
19 |
14 18
|
wa |
|- ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) |
20 |
19 11 4
|
wrex |
|- E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) |
21 |
20 5 10
|
wral |
|- A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) |
22 |
21 3 4
|
wral |
|- A. x e. j A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) |
23 |
22 1 2
|
crab |
|- { j e. Top | A. x e. j A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) } |
24 |
0 23
|
wceq |
|- Nrm = { j e. Top | A. x e. j A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) } |