Metamath Proof Explorer


Definition df-ntr

Description: Define a function on topologies whose value is the interior function on the subsets of the base set. See ntrval . (Contributed by NM, 10-Sep-2006)

Ref Expression
Assertion df-ntr
|- int = ( j e. Top |-> ( x e. ~P U. j |-> U. ( j i^i ~P x ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnt
 |-  int
1 vj
 |-  j
2 ctop
 |-  Top
3 vx
 |-  x
4 1 cv
 |-  j
5 4 cuni
 |-  U. j
6 5 cpw
 |-  ~P U. j
7 3 cv
 |-  x
8 7 cpw
 |-  ~P x
9 4 8 cin
 |-  ( j i^i ~P x )
10 9 cuni
 |-  U. ( j i^i ~P x )
11 3 6 10 cmpt
 |-  ( x e. ~P U. j |-> U. ( j i^i ~P x ) )
12 1 2 11 cmpt
 |-  ( j e. Top |-> ( x e. ~P U. j |-> U. ( j i^i ~P x ) ) )
13 0 12 wceq
 |-  int = ( j e. Top |-> ( x e. ~P U. j |-> U. ( j i^i ~P x ) ) )