| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cnv | 
							 |-  NrmCVec  | 
						
						
							| 1 | 
							
								
							 | 
							vg | 
							 |-  g  | 
						
						
							| 2 | 
							
								
							 | 
							vs | 
							 |-  s  | 
						
						
							| 3 | 
							
								
							 | 
							vn | 
							 |-  n  | 
						
						
							| 4 | 
							
								1
							 | 
							cv | 
							 |-  g  | 
						
						
							| 5 | 
							
								2
							 | 
							cv | 
							 |-  s  | 
						
						
							| 6 | 
							
								4 5
							 | 
							cop | 
							 |-  <. g , s >.  | 
						
						
							| 7 | 
							
								
							 | 
							cvc | 
							 |-  CVecOLD  | 
						
						
							| 8 | 
							
								6 7
							 | 
							wcel | 
							 |-  <. g , s >. e. CVecOLD  | 
						
						
							| 9 | 
							
								3
							 | 
							cv | 
							 |-  n  | 
						
						
							| 10 | 
							
								4
							 | 
							crn | 
							 |-  ran g  | 
						
						
							| 11 | 
							
								
							 | 
							cr | 
							 |-  RR  | 
						
						
							| 12 | 
							
								10 11 9
							 | 
							wf | 
							 |-  n : ran g --> RR  | 
						
						
							| 13 | 
							
								
							 | 
							vx | 
							 |-  x  | 
						
						
							| 14 | 
							
								13
							 | 
							cv | 
							 |-  x  | 
						
						
							| 15 | 
							
								14 9
							 | 
							cfv | 
							 |-  ( n ` x )  | 
						
						
							| 16 | 
							
								
							 | 
							cc0 | 
							 |-  0  | 
						
						
							| 17 | 
							
								15 16
							 | 
							wceq | 
							 |-  ( n ` x ) = 0  | 
						
						
							| 18 | 
							
								
							 | 
							cgi | 
							 |-  GId  | 
						
						
							| 19 | 
							
								4 18
							 | 
							cfv | 
							 |-  ( GId ` g )  | 
						
						
							| 20 | 
							
								14 19
							 | 
							wceq | 
							 |-  x = ( GId ` g )  | 
						
						
							| 21 | 
							
								17 20
							 | 
							wi | 
							 |-  ( ( n ` x ) = 0 -> x = ( GId ` g ) )  | 
						
						
							| 22 | 
							
								
							 | 
							vy | 
							 |-  y  | 
						
						
							| 23 | 
							
								
							 | 
							cc | 
							 |-  CC  | 
						
						
							| 24 | 
							
								22
							 | 
							cv | 
							 |-  y  | 
						
						
							| 25 | 
							
								24 14 5
							 | 
							co | 
							 |-  ( y s x )  | 
						
						
							| 26 | 
							
								25 9
							 | 
							cfv | 
							 |-  ( n ` ( y s x ) )  | 
						
						
							| 27 | 
							
								
							 | 
							cabs | 
							 |-  abs  | 
						
						
							| 28 | 
							
								24 27
							 | 
							cfv | 
							 |-  ( abs ` y )  | 
						
						
							| 29 | 
							
								
							 | 
							cmul | 
							 |-  x.  | 
						
						
							| 30 | 
							
								28 15 29
							 | 
							co | 
							 |-  ( ( abs ` y ) x. ( n ` x ) )  | 
						
						
							| 31 | 
							
								26 30
							 | 
							wceq | 
							 |-  ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) )  | 
						
						
							| 32 | 
							
								31 22 23
							 | 
							wral | 
							 |-  A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) )  | 
						
						
							| 33 | 
							
								14 24 4
							 | 
							co | 
							 |-  ( x g y )  | 
						
						
							| 34 | 
							
								33 9
							 | 
							cfv | 
							 |-  ( n ` ( x g y ) )  | 
						
						
							| 35 | 
							
								
							 | 
							cle | 
							 |-  <_  | 
						
						
							| 36 | 
							
								
							 | 
							caddc | 
							 |-  +  | 
						
						
							| 37 | 
							
								24 9
							 | 
							cfv | 
							 |-  ( n ` y )  | 
						
						
							| 38 | 
							
								15 37 36
							 | 
							co | 
							 |-  ( ( n ` x ) + ( n ` y ) )  | 
						
						
							| 39 | 
							
								34 38 35
							 | 
							wbr | 
							 |-  ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) )  | 
						
						
							| 40 | 
							
								39 22 10
							 | 
							wral | 
							 |-  A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) )  | 
						
						
							| 41 | 
							
								21 32 40
							 | 
							w3a | 
							 |-  ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) )  | 
						
						
							| 42 | 
							
								41 13 10
							 | 
							wral | 
							 |-  A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) )  | 
						
						
							| 43 | 
							
								8 12 42
							 | 
							w3a | 
							 |-  ( <. g , s >. e. CVecOLD /\ n : ran g --> RR /\ A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) )  | 
						
						
							| 44 | 
							
								43 1 2 3
							 | 
							coprab | 
							 |-  { <. <. g , s >. , n >. | ( <. g , s >. e. CVecOLD /\ n : ran g --> RR /\ A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) ) } | 
						
						
							| 45 | 
							
								0 44
							 | 
							wceq | 
							 |-  NrmCVec = { <. <. g , s >. , n >. | ( <. g , s >. e. CVecOLD /\ n : ran g --> RR /\ A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) ) } |