| Step |
Hyp |
Ref |
Expression |
| 0 |
|
co1 |
|- O(1) |
| 1 |
|
vf |
|- f |
| 2 |
|
cc |
|- CC |
| 3 |
|
cpm |
|- ^pm |
| 4 |
|
cr |
|- RR |
| 5 |
2 4 3
|
co |
|- ( CC ^pm RR ) |
| 6 |
|
vx |
|- x |
| 7 |
|
vm |
|- m |
| 8 |
|
vy |
|- y |
| 9 |
1
|
cv |
|- f |
| 10 |
9
|
cdm |
|- dom f |
| 11 |
6
|
cv |
|- x |
| 12 |
|
cico |
|- [,) |
| 13 |
|
cpnf |
|- +oo |
| 14 |
11 13 12
|
co |
|- ( x [,) +oo ) |
| 15 |
10 14
|
cin |
|- ( dom f i^i ( x [,) +oo ) ) |
| 16 |
|
cabs |
|- abs |
| 17 |
8
|
cv |
|- y |
| 18 |
17 9
|
cfv |
|- ( f ` y ) |
| 19 |
18 16
|
cfv |
|- ( abs ` ( f ` y ) ) |
| 20 |
|
cle |
|- <_ |
| 21 |
7
|
cv |
|- m |
| 22 |
19 21 20
|
wbr |
|- ( abs ` ( f ` y ) ) <_ m |
| 23 |
22 8 15
|
wral |
|- A. y e. ( dom f i^i ( x [,) +oo ) ) ( abs ` ( f ` y ) ) <_ m |
| 24 |
23 7 4
|
wrex |
|- E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( abs ` ( f ` y ) ) <_ m |
| 25 |
24 6 4
|
wrex |
|- E. x e. RR E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( abs ` ( f ` y ) ) <_ m |
| 26 |
25 1 5
|
crab |
|- { f e. ( CC ^pm RR ) | E. x e. RR E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( abs ` ( f ` y ) ) <_ m } |
| 27 |
0 26
|
wceq |
|- O(1) = { f e. ( CC ^pm RR ) | E. x e. RR E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( abs ` ( f ` y ) ) <_ m } |