Step |
Hyp |
Ref |
Expression |
0 |
|
cocv |
|- ocv |
1 |
|
vh |
|- h |
2 |
|
cvv |
|- _V |
3 |
|
vs |
|- s |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- h |
6 |
5 4
|
cfv |
|- ( Base ` h ) |
7 |
6
|
cpw |
|- ~P ( Base ` h ) |
8 |
|
vx |
|- x |
9 |
|
vy |
|- y |
10 |
3
|
cv |
|- s |
11 |
8
|
cv |
|- x |
12 |
|
cip |
|- .i |
13 |
5 12
|
cfv |
|- ( .i ` h ) |
14 |
9
|
cv |
|- y |
15 |
11 14 13
|
co |
|- ( x ( .i ` h ) y ) |
16 |
|
c0g |
|- 0g |
17 |
|
csca |
|- Scalar |
18 |
5 17
|
cfv |
|- ( Scalar ` h ) |
19 |
18 16
|
cfv |
|- ( 0g ` ( Scalar ` h ) ) |
20 |
15 19
|
wceq |
|- ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) |
21 |
20 9 10
|
wral |
|- A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) |
22 |
21 8 6
|
crab |
|- { x e. ( Base ` h ) | A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) } |
23 |
3 7 22
|
cmpt |
|- ( s e. ~P ( Base ` h ) |-> { x e. ( Base ` h ) | A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) } ) |
24 |
1 2 23
|
cmpt |
|- ( h e. _V |-> ( s e. ~P ( Base ` h ) |-> { x e. ( Base ` h ) | A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) } ) ) |
25 |
0 24
|
wceq |
|- ocv = ( h e. _V |-> ( s e. ~P ( Base ` h ) |-> { x e. ( Base ` h ) | A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) } ) ) |