| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cod |  |-  od | 
						
							| 1 |  | vg |  |-  g | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vx |  |-  x | 
						
							| 4 |  | cbs |  |-  Base | 
						
							| 5 | 1 | cv |  |-  g | 
						
							| 6 | 5 4 | cfv |  |-  ( Base ` g ) | 
						
							| 7 |  | vn |  |-  n | 
						
							| 8 |  | cn |  |-  NN | 
						
							| 9 | 7 | cv |  |-  n | 
						
							| 10 |  | cmg |  |-  .g | 
						
							| 11 | 5 10 | cfv |  |-  ( .g ` g ) | 
						
							| 12 | 3 | cv |  |-  x | 
						
							| 13 | 9 12 11 | co |  |-  ( n ( .g ` g ) x ) | 
						
							| 14 |  | c0g |  |-  0g | 
						
							| 15 | 5 14 | cfv |  |-  ( 0g ` g ) | 
						
							| 16 | 13 15 | wceq |  |-  ( n ( .g ` g ) x ) = ( 0g ` g ) | 
						
							| 17 | 16 7 8 | crab |  |-  { n e. NN | ( n ( .g ` g ) x ) = ( 0g ` g ) } | 
						
							| 18 |  | vi |  |-  i | 
						
							| 19 | 18 | cv |  |-  i | 
						
							| 20 |  | c0 |  |-  (/) | 
						
							| 21 | 19 20 | wceq |  |-  i = (/) | 
						
							| 22 |  | cc0 |  |-  0 | 
						
							| 23 |  | cr |  |-  RR | 
						
							| 24 |  | clt |  |-  < | 
						
							| 25 | 19 23 24 | cinf |  |-  inf ( i , RR , < ) | 
						
							| 26 | 21 22 25 | cif |  |-  if ( i = (/) , 0 , inf ( i , RR , < ) ) | 
						
							| 27 | 18 17 26 | csb |  |-  [_ { n e. NN | ( n ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) | 
						
							| 28 | 3 6 27 | cmpt |  |-  ( x e. ( Base ` g ) |-> [_ { n e. NN | ( n ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) | 
						
							| 29 | 1 2 28 | cmpt |  |-  ( g e. _V |-> ( x e. ( Base ` g ) |-> [_ { n e. NN | ( n ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) | 
						
							| 30 | 0 29 | wceq |  |-  od = ( g e. _V |-> ( x e. ( Base ` g ) |-> [_ { n e. NN | ( n ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |