Metamath Proof Explorer


Definition df-odd

Description: Define the set of odd numbers. (Contributed by AV, 14-Jun-2020)

Ref Expression
Assertion df-odd
|- Odd = { z e. ZZ | ( ( z + 1 ) / 2 ) e. ZZ }

Detailed syntax breakdown

Step Hyp Ref Expression
0 codd
 |-  Odd
1 vz
 |-  z
2 cz
 |-  ZZ
3 1 cv
 |-  z
4 caddc
 |-  +
5 c1
 |-  1
6 3 5 4 co
 |-  ( z + 1 )
7 cdiv
 |-  /
8 c2
 |-  2
9 6 8 7 co
 |-  ( ( z + 1 ) / 2 )
10 9 2 wcel
 |-  ( ( z + 1 ) / 2 ) e. ZZ
11 10 1 2 crab
 |-  { z e. ZZ | ( ( z + 1 ) / 2 ) e. ZZ }
12 0 11 wceq
 |-  Odd = { z e. ZZ | ( ( z + 1 ) / 2 ) e. ZZ }