Description: Define the set of odd numbers. (Contributed by AV, 14-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-odd | |- Odd = { z e. ZZ | ( ( z + 1 ) / 2 ) e. ZZ } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | codd | |- Odd | |
| 1 | vz | |- z | |
| 2 | cz | |- ZZ | |
| 3 | 1 | cv | |- z | 
| 4 | caddc | |- + | |
| 5 | c1 | |- 1 | |
| 6 | 3 5 4 | co | |- ( z + 1 ) | 
| 7 | cdiv | |- / | |
| 8 | c2 | |- 2 | |
| 9 | 6 8 7 | co | |- ( ( z + 1 ) / 2 ) | 
| 10 | 9 2 | wcel | |- ( ( z + 1 ) / 2 ) e. ZZ | 
| 11 | 10 1 2 | crab |  |-  { z e. ZZ | ( ( z + 1 ) / 2 ) e. ZZ } | 
| 12 | 0 11 | wceq |  |-  Odd = { z e. ZZ | ( ( z + 1 ) / 2 ) e. ZZ } |