Metamath Proof Explorer


Definition df-odu

Description: Define the dual of an ordered structure, which replaces the order component of the structure with its reverse. See odubas , oduleval , and oduleg for its principal properties.

EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass . (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Assertion df-odu
|- ODual = ( w e. _V |-> ( w sSet <. ( le ` ndx ) , `' ( le ` w ) >. ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 codu
 |-  ODual
1 vw
 |-  w
2 cvv
 |-  _V
3 1 cv
 |-  w
4 csts
 |-  sSet
5 cple
 |-  le
6 cnx
 |-  ndx
7 6 5 cfv
 |-  ( le ` ndx )
8 3 5 cfv
 |-  ( le ` w )
9 8 ccnv
 |-  `' ( le ` w )
10 7 9 cop
 |-  <. ( le ` ndx ) , `' ( le ` w ) >.
11 3 10 4 co
 |-  ( w sSet <. ( le ` ndx ) , `' ( le ` w ) >. )
12 1 2 11 cmpt
 |-  ( w e. _V |-> ( w sSet <. ( le ` ndx ) , `' ( le ` w ) >. ) )
13 0 12 wceq
 |-  ODual = ( w e. _V |-> ( w sSet <. ( le ` ndx ) , `' ( le ` w ) >. ) )