| Step |
Hyp |
Ref |
Expression |
| 0 |
|
codz |
|- odZ |
| 1 |
|
vn |
|- n |
| 2 |
|
cn |
|- NN |
| 3 |
|
vx |
|- x |
| 4 |
|
cz |
|- ZZ |
| 5 |
3
|
cv |
|- x |
| 6 |
|
cgcd |
|- gcd |
| 7 |
1
|
cv |
|- n |
| 8 |
5 7 6
|
co |
|- ( x gcd n ) |
| 9 |
|
c1 |
|- 1 |
| 10 |
8 9
|
wceq |
|- ( x gcd n ) = 1 |
| 11 |
10 3 4
|
crab |
|- { x e. ZZ | ( x gcd n ) = 1 } |
| 12 |
|
vm |
|- m |
| 13 |
|
cdvds |
|- || |
| 14 |
|
cexp |
|- ^ |
| 15 |
12
|
cv |
|- m |
| 16 |
5 15 14
|
co |
|- ( x ^ m ) |
| 17 |
|
cmin |
|- - |
| 18 |
16 9 17
|
co |
|- ( ( x ^ m ) - 1 ) |
| 19 |
7 18 13
|
wbr |
|- n || ( ( x ^ m ) - 1 ) |
| 20 |
19 12 2
|
crab |
|- { m e. NN | n || ( ( x ^ m ) - 1 ) } |
| 21 |
|
cr |
|- RR |
| 22 |
|
clt |
|- < |
| 23 |
20 21 22
|
cinf |
|- inf ( { m e. NN | n || ( ( x ^ m ) - 1 ) } , RR , < ) |
| 24 |
3 11 23
|
cmpt |
|- ( x e. { x e. ZZ | ( x gcd n ) = 1 } |-> inf ( { m e. NN | n || ( ( x ^ m ) - 1 ) } , RR , < ) ) |
| 25 |
1 2 24
|
cmpt |
|- ( n e. NN |-> ( x e. { x e. ZZ | ( x gcd n ) = 1 } |-> inf ( { m e. NN | n || ( ( x ^ m ) - 1 ) } , RR , < ) ) ) |
| 26 |
0 25
|
wceq |
|- odZ = ( n e. NN |-> ( x e. { x e. ZZ | ( x gcd n ) = 1 } |-> inf ( { m e. NN | n || ( ( x ^ m ) - 1 ) } , RR , < ) ) ) |