Step |
Hyp |
Ref |
Expression |
0 |
|
codz |
|- odZ |
1 |
|
vn |
|- n |
2 |
|
cn |
|- NN |
3 |
|
vx |
|- x |
4 |
|
cz |
|- ZZ |
5 |
3
|
cv |
|- x |
6 |
|
cgcd |
|- gcd |
7 |
1
|
cv |
|- n |
8 |
5 7 6
|
co |
|- ( x gcd n ) |
9 |
|
c1 |
|- 1 |
10 |
8 9
|
wceq |
|- ( x gcd n ) = 1 |
11 |
10 3 4
|
crab |
|- { x e. ZZ | ( x gcd n ) = 1 } |
12 |
|
vm |
|- m |
13 |
|
cdvds |
|- || |
14 |
|
cexp |
|- ^ |
15 |
12
|
cv |
|- m |
16 |
5 15 14
|
co |
|- ( x ^ m ) |
17 |
|
cmin |
|- - |
18 |
16 9 17
|
co |
|- ( ( x ^ m ) - 1 ) |
19 |
7 18 13
|
wbr |
|- n || ( ( x ^ m ) - 1 ) |
20 |
19 12 2
|
crab |
|- { m e. NN | n || ( ( x ^ m ) - 1 ) } |
21 |
|
cr |
|- RR |
22 |
|
clt |
|- < |
23 |
20 21 22
|
cinf |
|- inf ( { m e. NN | n || ( ( x ^ m ) - 1 ) } , RR , < ) |
24 |
3 11 23
|
cmpt |
|- ( x e. { x e. ZZ | ( x gcd n ) = 1 } |-> inf ( { m e. NN | n || ( ( x ^ m ) - 1 ) } , RR , < ) ) |
25 |
1 2 24
|
cmpt |
|- ( n e. NN |-> ( x e. { x e. ZZ | ( x gcd n ) = 1 } |-> inf ( { m e. NN | n || ( ( x ^ m ) - 1 ) } , RR , < ) ) ) |
26 |
0 25
|
wceq |
|- odZ = ( n e. NN |-> ( x e. { x e. ZZ | ( x gcd n ) = 1 } |-> inf ( { m e. NN | n || ( ( x ^ m ) - 1 ) } , RR , < ) ) ) |