Step |
Hyp |
Ref |
Expression |
0 |
|
coe |
|- ^o |
1 |
|
vx |
|- x |
2 |
|
con0 |
|- On |
3 |
|
vy |
|- y |
4 |
1
|
cv |
|- x |
5 |
|
c0 |
|- (/) |
6 |
4 5
|
wceq |
|- x = (/) |
7 |
|
c1o |
|- 1o |
8 |
3
|
cv |
|- y |
9 |
7 8
|
cdif |
|- ( 1o \ y ) |
10 |
|
vz |
|- z |
11 |
|
cvv |
|- _V |
12 |
10
|
cv |
|- z |
13 |
|
comu |
|- .o |
14 |
12 4 13
|
co |
|- ( z .o x ) |
15 |
10 11 14
|
cmpt |
|- ( z e. _V |-> ( z .o x ) ) |
16 |
15 7
|
crdg |
|- rec ( ( z e. _V |-> ( z .o x ) ) , 1o ) |
17 |
8 16
|
cfv |
|- ( rec ( ( z e. _V |-> ( z .o x ) ) , 1o ) ` y ) |
18 |
6 9 17
|
cif |
|- if ( x = (/) , ( 1o \ y ) , ( rec ( ( z e. _V |-> ( z .o x ) ) , 1o ) ` y ) ) |
19 |
1 3 2 2 18
|
cmpo |
|- ( x e. On , y e. On |-> if ( x = (/) , ( 1o \ y ) , ( rec ( ( z e. _V |-> ( z .o x ) ) , 1o ) ` y ) ) ) |
20 |
0 19
|
wceq |
|- ^o = ( x e. On , y e. On |-> if ( x = (/) , ( 1o \ y ) , ( rec ( ( z e. _V |-> ( z .o x ) ) , 1o ) ` y ) ) ) |