| Step |
Hyp |
Ref |
Expression |
| 0 |
|
coe |
|- ^o |
| 1 |
|
vx |
|- x |
| 2 |
|
con0 |
|- On |
| 3 |
|
vy |
|- y |
| 4 |
1
|
cv |
|- x |
| 5 |
|
c0 |
|- (/) |
| 6 |
4 5
|
wceq |
|- x = (/) |
| 7 |
|
c1o |
|- 1o |
| 8 |
3
|
cv |
|- y |
| 9 |
7 8
|
cdif |
|- ( 1o \ y ) |
| 10 |
|
vz |
|- z |
| 11 |
|
cvv |
|- _V |
| 12 |
10
|
cv |
|- z |
| 13 |
|
comu |
|- .o |
| 14 |
12 4 13
|
co |
|- ( z .o x ) |
| 15 |
10 11 14
|
cmpt |
|- ( z e. _V |-> ( z .o x ) ) |
| 16 |
15 7
|
crdg |
|- rec ( ( z e. _V |-> ( z .o x ) ) , 1o ) |
| 17 |
8 16
|
cfv |
|- ( rec ( ( z e. _V |-> ( z .o x ) ) , 1o ) ` y ) |
| 18 |
6 9 17
|
cif |
|- if ( x = (/) , ( 1o \ y ) , ( rec ( ( z e. _V |-> ( z .o x ) ) , 1o ) ` y ) ) |
| 19 |
1 3 2 2 18
|
cmpo |
|- ( x e. On , y e. On |-> if ( x = (/) , ( 1o \ y ) , ( rec ( ( z e. _V |-> ( z .o x ) ) , 1o ) ` y ) ) ) |
| 20 |
0 19
|
wceq |
|- ^o = ( x e. On , y e. On |-> if ( x = (/) , ( 1o \ y ) , ( rec ( ( z e. _V |-> ( z .o x ) ) , 1o ) ` y ) ) ) |