Description: Define the function operation map. The definition is designed so that if R is a binary operation, then oF R is the analogous operation on functions which corresponds to applying R pointwise to the values of the functions. (Contributed by Mario Carneiro, 20-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-of | |- oF R = ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cR | |- R |
|
1 | 0 | cof | |- oF R |
2 | vf | |- f |
|
3 | cvv | |- _V |
|
4 | vg | |- g |
|
5 | vx | |- x |
|
6 | 2 | cv | |- f |
7 | 6 | cdm | |- dom f |
8 | 4 | cv | |- g |
9 | 8 | cdm | |- dom g |
10 | 7 9 | cin | |- ( dom f i^i dom g ) |
11 | 5 | cv | |- x |
12 | 11 6 | cfv | |- ( f ` x ) |
13 | 11 8 | cfv | |- ( g ` x ) |
14 | 12 13 0 | co | |- ( ( f ` x ) R ( g ` x ) ) |
15 | 5 10 14 | cmpt | |- ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) |
16 | 2 4 3 3 15 | cmpo | |- ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) |
17 | 1 16 | wceq | |- oF R = ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) |