Description: Define the function operation map. The definition is designed so that if R is a binary operation, then oF R is the analogous operation on functions which corresponds to applying R pointwise to the values of the functions. (Contributed by Mario Carneiro, 20-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-of | |- oF R = ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | |- R |
|
| 1 | 0 | cof | |- oF R |
| 2 | vf | |- f |
|
| 3 | cvv | |- _V |
|
| 4 | vg | |- g |
|
| 5 | vx | |- x |
|
| 6 | 2 | cv | |- f |
| 7 | 6 | cdm | |- dom f |
| 8 | 4 | cv | |- g |
| 9 | 8 | cdm | |- dom g |
| 10 | 7 9 | cin | |- ( dom f i^i dom g ) |
| 11 | 5 | cv | |- x |
| 12 | 11 6 | cfv | |- ( f ` x ) |
| 13 | 11 8 | cfv | |- ( g ` x ) |
| 14 | 12 13 0 | co | |- ( ( f ` x ) R ( g ` x ) ) |
| 15 | 5 10 14 | cmpt | |- ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) |
| 16 | 2 4 3 3 15 | cmpo | |- ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) |
| 17 | 1 16 | wceq | |- oF R = ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) |