Metamath Proof Explorer


Definition df-of

Description: Define the function operation map. The definition is designed so that if R is a binary operation, then oF R is the analogous operation on functions which corresponds to applying R pointwise to the values of the functions. (Contributed by Mario Carneiro, 20-Jul-2014)

Ref Expression
Assertion df-of
|- oF R = ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR
 |-  R
1 0 cof
 |-  oF R
2 vf
 |-  f
3 cvv
 |-  _V
4 vg
 |-  g
5 vx
 |-  x
6 2 cv
 |-  f
7 6 cdm
 |-  dom f
8 4 cv
 |-  g
9 8 cdm
 |-  dom g
10 7 9 cin
 |-  ( dom f i^i dom g )
11 5 cv
 |-  x
12 11 6 cfv
 |-  ( f ` x )
13 11 8 cfv
 |-  ( g ` x )
14 12 13 0 co
 |-  ( ( f ` x ) R ( g ` x ) )
15 5 10 14 cmpt
 |-  ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) )
16 2 4 3 3 15 cmpo
 |-  ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) )
17 1 16 wceq
 |-  oF R = ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) )