Description: Define the function relation map. The definition is designed so that if R is a binary relation, then oR R is the analogous relation on functions which is true when each element of the left function relates to the corresponding element of the right function. (Contributed by Mario Carneiro, 28-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-ofr | |- oR R = { <. f , g >. | A. x e. ( dom f i^i dom g ) ( f ` x ) R ( g ` x ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cR | |- R |
|
1 | 0 | cofr | |- oR R |
2 | vf | |- f |
|
3 | vg | |- g |
|
4 | vx | |- x |
|
5 | 2 | cv | |- f |
6 | 5 | cdm | |- dom f |
7 | 3 | cv | |- g |
8 | 7 | cdm | |- dom g |
9 | 6 8 | cin | |- ( dom f i^i dom g ) |
10 | 4 | cv | |- x |
11 | 10 5 | cfv | |- ( f ` x ) |
12 | 10 7 | cfv | |- ( g ` x ) |
13 | 11 12 0 | wbr | |- ( f ` x ) R ( g ` x ) |
14 | 13 4 9 | wral | |- A. x e. ( dom f i^i dom g ) ( f ` x ) R ( g ` x ) |
15 | 14 2 3 | copab | |- { <. f , g >. | A. x e. ( dom f i^i dom g ) ( f ` x ) R ( g ` x ) } |
16 | 1 15 | wceq | |- oR R = { <. f , g >. | A. x e. ( dom f i^i dom g ) ( f ` x ) R ( g ` x ) } |