Metamath Proof Explorer


Definition df-ofr

Description: Define the function relation map. The definition is designed so that if R is a binary relation, then oR R is the analogous relation on functions which is true when each element of the left function relates to the corresponding element of the right function. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Assertion df-ofr
|- oR R = { <. f , g >. | A. x e. ( dom f i^i dom g ) ( f ` x ) R ( g ` x ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR
 |-  R
1 0 cofr
 |-  oR R
2 vf
 |-  f
3 vg
 |-  g
4 vx
 |-  x
5 2 cv
 |-  f
6 5 cdm
 |-  dom f
7 3 cv
 |-  g
8 7 cdm
 |-  dom g
9 6 8 cin
 |-  ( dom f i^i dom g )
10 4 cv
 |-  x
11 10 5 cfv
 |-  ( f ` x )
12 10 7 cfv
 |-  ( g ` x )
13 11 12 0 wbr
 |-  ( f ` x ) R ( g ` x )
14 13 4 9 wral
 |-  A. x e. ( dom f i^i dom g ) ( f ` x ) R ( g ` x )
15 14 2 3 copab
 |-  { <. f , g >. | A. x e. ( dom f i^i dom g ) ( f ` x ) R ( g ` x ) }
16 1 15 wceq
 |-  oR R = { <. f , g >. | A. x e. ( dom f i^i dom g ) ( f ` x ) R ( g ` x ) }