Description: Define the class of natural numbers, which are all ordinal numbers that are less than every limit ordinal, i.e., all finite ordinals. Our definition is a variant of the Definition of N of BellMachover p. 471. See dfom2 for an alternate definition. Later, when we assume the Axiom of Infinity, we show _om is a set in omex , and _om can then be defined per dfom3 (the smallest inductive set) and dfom4 .
Note: the natural numbers _om are a subset of the ordinal numbers df-on . Later, when we define complex numbers, we will be able to also define a subset of the complex numbers ( df-nn ) with analogous properties and operations, but they will be different sets. (Contributed by NM, 15-May-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | df-om | |- _om = { x e. On | A. y ( Lim y -> x e. y ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | com | |- _om |
|
1 | vx | |- x |
|
2 | con0 | |- On |
|
3 | vy | |- y |
|
4 | 3 | cv | |- y |
5 | 4 | wlim | |- Lim y |
6 | 1 | cv | |- x |
7 | 6 4 | wcel | |- x e. y |
8 | 5 7 | wi | |- ( Lim y -> x e. y ) |
9 | 8 3 | wal | |- A. y ( Lim y -> x e. y ) |
10 | 9 1 2 | crab | |- { x e. On | A. y ( Lim y -> x e. y ) } |
11 | 0 10 | wceq | |- _om = { x e. On | A. y ( Lim y -> x e. y ) } |