Step |
Hyp |
Ref |
Expression |
0 |
|
comu |
|- .o |
1 |
|
vx |
|- x |
2 |
|
con0 |
|- On |
3 |
|
vy |
|- y |
4 |
|
vz |
|- z |
5 |
|
cvv |
|- _V |
6 |
4
|
cv |
|- z |
7 |
|
coa |
|- +o |
8 |
1
|
cv |
|- x |
9 |
6 8 7
|
co |
|- ( z +o x ) |
10 |
4 5 9
|
cmpt |
|- ( z e. _V |-> ( z +o x ) ) |
11 |
|
c0 |
|- (/) |
12 |
10 11
|
crdg |
|- rec ( ( z e. _V |-> ( z +o x ) ) , (/) ) |
13 |
3
|
cv |
|- y |
14 |
13 12
|
cfv |
|- ( rec ( ( z e. _V |-> ( z +o x ) ) , (/) ) ` y ) |
15 |
1 3 2 2 14
|
cmpo |
|- ( x e. On , y e. On |-> ( rec ( ( z e. _V |-> ( z +o x ) ) , (/) ) ` y ) ) |
16 |
0 15
|
wceq |
|- .o = ( x e. On , y e. On |-> ( rec ( ( z e. _V |-> ( z +o x ) ) , (/) ) ` y ) ) |