Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of Monk1 p. 34. Usually x and y are distinct, although the definition does not require it (see dfid2 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 . An example is given by ex-opab . (Contributed by NM, 4-Jul-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | df-opab | |- { <. x , y >. | ph } = { z | E. x E. y ( z = <. x , y >. /\ ph ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | vx | |- x |
|
1 | vy | |- y |
|
2 | wph | |- ph |
|
3 | 2 0 1 | copab | |- { <. x , y >. | ph } |
4 | vz | |- z |
|
5 | 4 | cv | |- z |
6 | 0 | cv | |- x |
7 | 1 | cv | |- y |
8 | 6 7 | cop | |- <. x , y >. |
9 | 5 8 | wceq | |- z = <. x , y >. |
10 | 9 2 | wa | |- ( z = <. x , y >. /\ ph ) |
11 | 10 1 | wex | |- E. y ( z = <. x , y >. /\ ph ) |
12 | 11 0 | wex | |- E. x E. y ( z = <. x , y >. /\ ph ) |
13 | 12 4 | cab | |- { z | E. x E. y ( z = <. x , y >. /\ ph ) } |
14 | 3 13 | wceq | |- { <. x , y >. | ph } = { z | E. x E. y ( z = <. x , y >. /\ ph ) } |