Metamath Proof Explorer


Definition df-opab

Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of Monk1 p. 34. Usually x and y are distinct, although the definition does not require it (see dfid2 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 . An example is given by ex-opab . (Contributed by NM, 4-Jul-1994)

Ref Expression
Assertion df-opab
|- { <. x , y >. | ph } = { z | E. x E. y ( z = <. x , y >. /\ ph ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 vy
 |-  y
2 wph
 |-  ph
3 2 0 1 copab
 |-  { <. x , y >. | ph }
4 vz
 |-  z
5 4 cv
 |-  z
6 0 cv
 |-  x
7 1 cv
 |-  y
8 6 7 cop
 |-  <. x , y >.
9 5 8 wceq
 |-  z = <. x , y >.
10 9 2 wa
 |-  ( z = <. x , y >. /\ ph )
11 10 1 wex
 |-  E. y ( z = <. x , y >. /\ ph )
12 11 0 wex
 |-  E. x E. y ( z = <. x , y >. /\ ph )
13 12 4 cab
 |-  { z | E. x E. y ( z = <. x , y >. /\ ph ) }
14 3 13 wceq
 |-  { <. x , y >. | ph } = { z | E. x E. y ( z = <. x , y >. /\ ph ) }