| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cops |
|- OP |
| 1 |
|
vp |
|- p |
| 2 |
|
cpo |
|- Poset |
| 3 |
|
cbs |
|- Base |
| 4 |
1
|
cv |
|- p |
| 5 |
4 3
|
cfv |
|- ( Base ` p ) |
| 6 |
|
club |
|- lub |
| 7 |
4 6
|
cfv |
|- ( lub ` p ) |
| 8 |
7
|
cdm |
|- dom ( lub ` p ) |
| 9 |
5 8
|
wcel |
|- ( Base ` p ) e. dom ( lub ` p ) |
| 10 |
|
cglb |
|- glb |
| 11 |
4 10
|
cfv |
|- ( glb ` p ) |
| 12 |
11
|
cdm |
|- dom ( glb ` p ) |
| 13 |
5 12
|
wcel |
|- ( Base ` p ) e. dom ( glb ` p ) |
| 14 |
9 13
|
wa |
|- ( ( Base ` p ) e. dom ( lub ` p ) /\ ( Base ` p ) e. dom ( glb ` p ) ) |
| 15 |
|
vo |
|- o |
| 16 |
15
|
cv |
|- o |
| 17 |
|
coc |
|- oc |
| 18 |
4 17
|
cfv |
|- ( oc ` p ) |
| 19 |
16 18
|
wceq |
|- o = ( oc ` p ) |
| 20 |
|
va |
|- a |
| 21 |
|
vb |
|- b |
| 22 |
20
|
cv |
|- a |
| 23 |
22 16
|
cfv |
|- ( o ` a ) |
| 24 |
23 5
|
wcel |
|- ( o ` a ) e. ( Base ` p ) |
| 25 |
23 16
|
cfv |
|- ( o ` ( o ` a ) ) |
| 26 |
25 22
|
wceq |
|- ( o ` ( o ` a ) ) = a |
| 27 |
|
cple |
|- le |
| 28 |
4 27
|
cfv |
|- ( le ` p ) |
| 29 |
21
|
cv |
|- b |
| 30 |
22 29 28
|
wbr |
|- a ( le ` p ) b |
| 31 |
29 16
|
cfv |
|- ( o ` b ) |
| 32 |
31 23 28
|
wbr |
|- ( o ` b ) ( le ` p ) ( o ` a ) |
| 33 |
30 32
|
wi |
|- ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) |
| 34 |
24 26 33
|
w3a |
|- ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) |
| 35 |
|
cjn |
|- join |
| 36 |
4 35
|
cfv |
|- ( join ` p ) |
| 37 |
22 23 36
|
co |
|- ( a ( join ` p ) ( o ` a ) ) |
| 38 |
|
cp1 |
|- 1. |
| 39 |
4 38
|
cfv |
|- ( 1. ` p ) |
| 40 |
37 39
|
wceq |
|- ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) |
| 41 |
|
cmee |
|- meet |
| 42 |
4 41
|
cfv |
|- ( meet ` p ) |
| 43 |
22 23 42
|
co |
|- ( a ( meet ` p ) ( o ` a ) ) |
| 44 |
|
cp0 |
|- 0. |
| 45 |
4 44
|
cfv |
|- ( 0. ` p ) |
| 46 |
43 45
|
wceq |
|- ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) |
| 47 |
34 40 46
|
w3a |
|- ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) |
| 48 |
47 21 5
|
wral |
|- A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) |
| 49 |
48 20 5
|
wral |
|- A. a e. ( Base ` p ) A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) |
| 50 |
19 49
|
wa |
|- ( o = ( oc ` p ) /\ A. a e. ( Base ` p ) A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) ) |
| 51 |
50 15
|
wex |
|- E. o ( o = ( oc ` p ) /\ A. a e. ( Base ` p ) A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) ) |
| 52 |
14 51
|
wa |
|- ( ( ( Base ` p ) e. dom ( lub ` p ) /\ ( Base ` p ) e. dom ( glb ` p ) ) /\ E. o ( o = ( oc ` p ) /\ A. a e. ( Base ` p ) A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) ) ) |
| 53 |
52 1 2
|
crab |
|- { p e. Poset | ( ( ( Base ` p ) e. dom ( lub ` p ) /\ ( Base ` p ) e. dom ( glb ` p ) ) /\ E. o ( o = ( oc ` p ) /\ A. a e. ( Base ` p ) A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) ) ) } |
| 54 |
0 53
|
wceq |
|- OP = { p e. Poset | ( ( ( Base ` p ) e. dom ( lub ` p ) /\ ( Base ` p ) e. dom ( glb ` p ) ) /\ E. o ( o = ( oc ` p ) /\ A. a e. ( Base ` p ) A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) ) ) } |