Step |
Hyp |
Ref |
Expression |
0 |
|
cops |
|- OP |
1 |
|
vp |
|- p |
2 |
|
cpo |
|- Poset |
3 |
|
cbs |
|- Base |
4 |
1
|
cv |
|- p |
5 |
4 3
|
cfv |
|- ( Base ` p ) |
6 |
|
club |
|- lub |
7 |
4 6
|
cfv |
|- ( lub ` p ) |
8 |
7
|
cdm |
|- dom ( lub ` p ) |
9 |
5 8
|
wcel |
|- ( Base ` p ) e. dom ( lub ` p ) |
10 |
|
cglb |
|- glb |
11 |
4 10
|
cfv |
|- ( glb ` p ) |
12 |
11
|
cdm |
|- dom ( glb ` p ) |
13 |
5 12
|
wcel |
|- ( Base ` p ) e. dom ( glb ` p ) |
14 |
9 13
|
wa |
|- ( ( Base ` p ) e. dom ( lub ` p ) /\ ( Base ` p ) e. dom ( glb ` p ) ) |
15 |
|
vo |
|- o |
16 |
15
|
cv |
|- o |
17 |
|
coc |
|- oc |
18 |
4 17
|
cfv |
|- ( oc ` p ) |
19 |
16 18
|
wceq |
|- o = ( oc ` p ) |
20 |
|
va |
|- a |
21 |
|
vb |
|- b |
22 |
20
|
cv |
|- a |
23 |
22 16
|
cfv |
|- ( o ` a ) |
24 |
23 5
|
wcel |
|- ( o ` a ) e. ( Base ` p ) |
25 |
23 16
|
cfv |
|- ( o ` ( o ` a ) ) |
26 |
25 22
|
wceq |
|- ( o ` ( o ` a ) ) = a |
27 |
|
cple |
|- le |
28 |
4 27
|
cfv |
|- ( le ` p ) |
29 |
21
|
cv |
|- b |
30 |
22 29 28
|
wbr |
|- a ( le ` p ) b |
31 |
29 16
|
cfv |
|- ( o ` b ) |
32 |
31 23 28
|
wbr |
|- ( o ` b ) ( le ` p ) ( o ` a ) |
33 |
30 32
|
wi |
|- ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) |
34 |
24 26 33
|
w3a |
|- ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) |
35 |
|
cjn |
|- join |
36 |
4 35
|
cfv |
|- ( join ` p ) |
37 |
22 23 36
|
co |
|- ( a ( join ` p ) ( o ` a ) ) |
38 |
|
cp1 |
|- 1. |
39 |
4 38
|
cfv |
|- ( 1. ` p ) |
40 |
37 39
|
wceq |
|- ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) |
41 |
|
cmee |
|- meet |
42 |
4 41
|
cfv |
|- ( meet ` p ) |
43 |
22 23 42
|
co |
|- ( a ( meet ` p ) ( o ` a ) ) |
44 |
|
cp0 |
|- 0. |
45 |
4 44
|
cfv |
|- ( 0. ` p ) |
46 |
43 45
|
wceq |
|- ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) |
47 |
34 40 46
|
w3a |
|- ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) |
48 |
47 21 5
|
wral |
|- A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) |
49 |
48 20 5
|
wral |
|- A. a e. ( Base ` p ) A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) |
50 |
19 49
|
wa |
|- ( o = ( oc ` p ) /\ A. a e. ( Base ` p ) A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) ) |
51 |
50 15
|
wex |
|- E. o ( o = ( oc ` p ) /\ A. a e. ( Base ` p ) A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) ) |
52 |
14 51
|
wa |
|- ( ( ( Base ` p ) e. dom ( lub ` p ) /\ ( Base ` p ) e. dom ( glb ` p ) ) /\ E. o ( o = ( oc ` p ) /\ A. a e. ( Base ` p ) A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) ) ) |
53 |
52 1 2
|
crab |
|- { p e. Poset | ( ( ( Base ` p ) e. dom ( lub ` p ) /\ ( Base ` p ) e. dom ( glb ` p ) ) /\ E. o ( o = ( oc ` p ) /\ A. a e. ( Base ` p ) A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) ) ) } |
54 |
0 53
|
wceq |
|- OP = { p e. Poset | ( ( ( Base ` p ) e. dom ( lub ` p ) /\ ( Base ` p ) e. dom ( glb ` p ) ) /\ E. o ( o = ( oc ` p ) /\ A. a e. ( Base ` p ) A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) ) ) } |